671 |
khor |
1 |
#include <stdlib.h>
|
|
|
2 |
#ifdef __APPLE__
|
|
|
3 |
#include <GLUT/GLUT.h>
|
|
|
4 |
#else
|
|
|
5 |
#include <GL/glut.h>
|
|
|
6 |
#endif
|
|
|
7 |
|
|
|
8 |
#include <CGLA/Vec2i.h>
|
|
|
9 |
#include <CGLA/Vec3uc.h>
|
|
|
10 |
|
|
|
11 |
#include "scene.h"
|
|
|
12 |
#include "camera.h"
|
|
|
13 |
#include "mesh.h"
|
|
|
14 |
#include "omni.h"
|
|
|
15 |
|
|
|
16 |
#include "matte.h"
|
|
|
17 |
#include "plastic.h"
|
|
|
18 |
#include "metal.h"
|
|
|
19 |
#include "glass.h"
|
|
|
20 |
|
|
|
21 |
#include "pathtracer.h"
|
|
|
22 |
|
|
|
23 |
using namespace CGLA;
|
|
|
24 |
|
|
|
25 |
//global pointer to the active scene
|
|
|
26 |
scene* current;
|
|
|
27 |
|
|
|
28 |
static pathtracer* renderer;
|
|
|
29 |
|
|
|
30 |
const int width = 64*8;
|
|
|
31 |
const int height = 64*8;
|
|
|
32 |
|
|
|
33 |
static Vec3f* film;
|
|
|
34 |
static Vec3uc* image;
|
|
|
35 |
static Vec2i pixel(0);
|
|
|
36 |
static bool done = false;
|
|
|
37 |
|
|
|
38 |
static float dgamma = 2.2f;
|
|
|
39 |
static float dexposure = 0.f;
|
|
|
40 |
|
|
|
41 |
|
|
|
42 |
pathtracer::pathtracer(int w, int h, bool explicit_direct, int subsamples)
|
|
|
43 |
: width_(w), height_(h), scene_(0)
|
|
|
44 |
{
|
|
|
45 |
explicit_direct_ = explicit_direct;
|
|
|
46 |
subsamples_ = subsamples;
|
|
|
47 |
}
|
|
|
48 |
|
|
|
49 |
void pathtracer::set_scene(scene* s)
|
|
|
50 |
{
|
|
|
51 |
scene_ = s;
|
|
|
52 |
}
|
|
|
53 |
|
|
|
54 |
CGLA::Vec3f pathtracer::trace(const ray& r, bool include_emitted)
|
|
|
55 |
{
|
|
|
56 |
//intersect ray with
|
|
|
57 |
hit_info hi;
|
|
|
58 |
bool hit = scene_->intersect(r, hi);
|
|
|
59 |
|
|
|
60 |
if (!hit)
|
|
|
61 |
return Vec3f(0.f, 0.f, 0.f);
|
|
|
62 |
|
|
|
63 |
//Vec3f x, y, z = hi.shading_normal;
|
|
|
64 |
//orthogonal(z, x, y);
|
|
|
65 |
//return (Vec3f(hi.texcoords(0),hi.texcoords(1),0) + Vec3f(0.f)) / 1.f;
|
|
|
66 |
|
|
|
67 |
//only include emitted light if requested
|
|
|
68 |
CGLA::Vec3f Le(0.f);
|
|
|
69 |
if (include_emitted)
|
|
|
70 |
Le = hi.emitted;
|
|
|
71 |
|
|
|
72 |
//compute reflectance for each bsdf component
|
|
|
73 |
float rho_diffuse = intensity(hi.diffuse);
|
|
|
74 |
float rho_glossy = intensity(hi.glossy);
|
|
|
75 |
float rho_reflection = intensity(hi.reflection);
|
|
|
76 |
float rho_refraction = intensity(hi.refraction);
|
|
|
77 |
float rho_total = rho_diffuse+rho_glossy+rho_reflection+rho_refraction;
|
|
|
78 |
assert(rho_total < 1.f);
|
|
|
79 |
|
|
|
80 |
if (rho_total == 0.f)
|
|
|
81 |
return Le;
|
|
|
82 |
|
|
|
83 |
//compute direct lighting on hit point
|
|
|
84 |
CGLA::Vec3f Ld(0.f);
|
|
|
85 |
Vec3f wo = -r.direction;
|
|
|
86 |
if (explicit_direct_ && rho_diffuse+rho_glossy>0.f)
|
|
|
87 |
{
|
|
|
88 |
size_t nlums = scene_->luminaires();
|
|
|
89 |
for (size_t i=0; i<nlums; ++i)
|
|
|
90 |
{
|
|
|
91 |
const luminaire* lum = scene_->get_luminaire(i);
|
|
|
92 |
int samples = lum->samples();
|
|
|
93 |
|
|
|
94 |
Vec3f L(0.f);
|
|
|
95 |
for (int j=0; j<samples; ++j)
|
|
|
96 |
{
|
|
|
97 |
Vec3f Li, wi;
|
|
|
98 |
if (lum->sample(r, hi, Li, wi))
|
|
|
99 |
{
|
|
|
100 |
float cost = std::max(dot(hi.shading_normal, wi),0.f);
|
|
|
101 |
L += Li * cost * bsdf_evaluate(hi, wi, wo);
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
Ld += L / float(samples);
|
|
|
105 |
}
|
|
|
106 |
}
|
|
|
107 |
}
|
|
|
108 |
|
|
|
109 |
//use russian roulette to terminate path
|
|
|
110 |
float prussian = 1.f;
|
|
|
111 |
float rr = mt_random();
|
|
|
112 |
|
|
|
113 |
if (r.depth > 3)
|
|
|
114 |
{
|
|
|
115 |
prussian = rho_total;
|
|
|
116 |
|
|
|
117 |
if (rr >= prussian)
|
|
|
118 |
return Ld + Le;
|
|
|
119 |
}
|
|
|
120 |
|
|
|
121 |
//figure out which bXdf to sample
|
|
|
122 |
float pdiffuse = rho_diffuse/rho_total;
|
|
|
123 |
float pglossy = rho_glossy/rho_total;
|
|
|
124 |
float preflection = rho_reflection/rho_total;
|
|
|
125 |
float prefraction = rho_refraction/rho_total;
|
|
|
126 |
|
|
|
127 |
Vec3f wi;
|
|
|
128 |
float pwi;
|
|
|
129 |
Vec3f fs;
|
|
|
130 |
bool sample_emitted = !explicit_direct_;
|
|
|
131 |
if (rr <= pdiffuse)
|
|
|
132 |
{
|
|
|
133 |
//sample diffuse
|
|
|
134 |
float pwi = sample_lambertian(hi, wo, wi);
|
|
|
135 |
fs = lambertian_brdf(hi, wi, wo) / (pwi * pdiffuse * prussian);
|
|
|
136 |
}
|
|
|
137 |
else if (rr <= pdiffuse+pglossy)
|
|
|
138 |
{
|
|
|
139 |
//sample glossy part
|
|
|
140 |
float pwi = sample_phong(hi, wo, wi);
|
|
|
141 |
|
|
|
142 |
if (dot(hi.shading_normal, wi) <= 0.f)
|
|
|
143 |
return Le + Ld;
|
|
|
144 |
|
|
|
145 |
fs = phong_brdf(hi, wi, wo) / (pwi * pglossy * prussian);
|
|
|
146 |
}
|
|
|
147 |
else if (rr <= pdiffuse+pglossy+preflection)
|
|
|
148 |
{
|
|
|
149 |
//sample perfect specular reflection
|
|
|
150 |
wi = reflect(hi.shading_normal, wo);
|
|
|
151 |
pwi = 1.f;
|
|
|
152 |
float cost = dot(hi.shading_normal, wo);
|
|
|
153 |
fs = hi.reflection / (pwi * preflection * cost);
|
|
|
154 |
sample_emitted = true;
|
|
|
155 |
}
|
|
|
156 |
else if (rr <= pdiffuse+pglossy+preflection+prefraction)
|
|
|
157 |
{
|
|
|
158 |
//sample perfect specular refraction
|
|
|
159 |
bool not_tir = refract(hi.shading_normal, wo, 1.f/hi.ior, wi);
|
|
|
160 |
assert(not_tir);
|
|
|
161 |
pwi = 1.f;
|
|
|
162 |
float cost = std::abs(dot(hi.shading_normal, wi));
|
|
|
163 |
fs = hi.refraction / (pwi * prefraction * cost);
|
|
|
164 |
sample_emitted = true;
|
|
|
165 |
}
|
|
|
166 |
else
|
|
|
167 |
assert(false);
|
|
|
168 |
|
|
|
169 |
//create aux ray
|
|
|
170 |
ray s;
|
|
|
171 |
s.origin = hi.position + epsilon * wi;
|
|
|
172 |
s.direction = wi;
|
|
|
173 |
s.depth = r.depth + 1;
|
|
|
174 |
s.distance = std::numeric_limits<float>::infinity();
|
|
|
175 |
float cost = std::abs(dot(hi.shading_normal, wi));
|
|
|
176 |
Vec3f Li = cost * fs * trace(s, sample_emitted);
|
|
|
177 |
|
|
|
178 |
//returm sum of emitted + direct + indirect
|
|
|
179 |
return Le + Ld + Li;
|
|
|
180 |
}
|
|
|
181 |
|
|
|
182 |
Vec3f pathtracer::compute_pixel(int w, int h)
|
|
|
183 |
{
|
|
|
184 |
assert(scene_);
|
|
|
185 |
|
|
|
186 |
//supersample
|
|
|
187 |
Vec3f L(0.f);
|
|
|
188 |
for (int j=0; j<subsamples_; ++j)
|
|
|
189 |
{
|
|
|
190 |
float y = h + (j + 0.5f) / subsamples_;
|
|
|
191 |
|
|
|
192 |
for (int i=0; i<subsamples_; ++i)
|
|
|
193 |
{
|
|
|
194 |
float x = w + (i + 0.5f) / subsamples_;
|
|
|
195 |
|
|
|
196 |
//ask camera for initial ray..
|
|
|
197 |
Vec2f uv(x/width_, y/height_);
|
|
|
198 |
ray r = scene_->get_camera()->generate(uv);
|
|
|
199 |
|
|
|
200 |
//trace ray
|
|
|
201 |
L += trace(r, true);
|
|
|
202 |
}
|
|
|
203 |
}
|
|
|
204 |
|
|
|
205 |
return L / float(subsamples_ * subsamples_);
|
|
|
206 |
}
|
|
|
207 |
|
|
|
208 |
|
|
|
209 |
Vec3uc tonemap(const Vec3f& v)
|
|
|
210 |
{
|
|
|
211 |
Vec3f u = v * std::pow(2.f, dexposure);
|
|
|
212 |
float r = mt_random() - 0.5f;
|
|
|
213 |
|
|
|
214 |
Vec3uc I;
|
|
|
215 |
for (int i=0; i<3; ++i)
|
|
|
216 |
{
|
|
|
217 |
float c = std::pow(u[i], 1.f / dgamma);
|
|
|
218 |
c = 255.f * c + 0.5f + r;
|
|
|
219 |
I[i] = clamp(int(c), 0, 255);
|
|
|
220 |
}
|
|
|
221 |
return I;
|
|
|
222 |
}
|
|
|
223 |
|
|
|
224 |
void display(void)
|
|
|
225 |
{
|
|
|
226 |
glClear(GL_COLOR_BUFFER_BIT);
|
|
|
227 |
|
|
|
228 |
for (int j=0; j<height; ++j)
|
|
|
229 |
for (int i=0; i<width; ++i)
|
|
|
230 |
image[i + j*width] = tonemap(film[i + j*width]);
|
|
|
231 |
|
|
|
232 |
glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, image);
|
|
|
233 |
glutSwapBuffers();
|
|
|
234 |
|
|
|
235 |
GLenum e = glGetError();
|
|
|
236 |
if (e != GL_NO_ERROR)
|
|
|
237 |
{
|
|
|
238 |
printf("OpenGL error: %s\n", gluErrorString(e));
|
|
|
239 |
exit(EXIT_FAILURE);
|
|
|
240 |
}
|
|
|
241 |
}
|
|
|
242 |
|
|
|
243 |
void reshape(GLint width, GLint height)
|
|
|
244 |
{
|
|
|
245 |
glMatrixMode(GL_PROJECTION);
|
|
|
246 |
glLoadIdentity();
|
|
|
247 |
gluOrtho2D(0, width, 0, height);
|
|
|
248 |
glMatrixMode(GL_MODELVIEW);
|
|
|
249 |
glLoadIdentity();
|
|
|
250 |
}
|
|
|
251 |
|
|
|
252 |
void special(int key, int x, int y)
|
|
|
253 |
{
|
|
|
254 |
switch (key)
|
|
|
255 |
{
|
|
|
256 |
case GLUT_KEY_LEFT:
|
|
|
257 |
dgamma = std::max(dgamma - 0.1f, 0.5f);
|
|
|
258 |
break;
|
|
|
259 |
|
|
|
260 |
case GLUT_KEY_RIGHT:
|
|
|
261 |
dgamma = std::min(dgamma + 0.1f, 5.f);
|
|
|
262 |
break;
|
|
|
263 |
|
|
|
264 |
case GLUT_KEY_DOWN:
|
|
|
265 |
dexposure = std::max(dexposure - 0.1f, -10.f);
|
|
|
266 |
break;
|
|
|
267 |
|
|
|
268 |
case GLUT_KEY_UP:
|
|
|
269 |
dexposure = std::min(dexposure + 0.1f, 10.f);
|
|
|
270 |
break;
|
|
|
271 |
}
|
|
|
272 |
|
|
|
273 |
printf("gamma: %.2f, exposure: %.2f\n", dgamma, dexposure);
|
|
|
274 |
glutPostRedisplay();
|
|
|
275 |
}
|
|
|
276 |
|
|
|
277 |
void keyboard(unsigned char key, int x, int y)
|
|
|
278 |
{
|
|
|
279 |
switch (key)
|
|
|
280 |
{
|
|
|
281 |
case 27: //ESCAPE key
|
|
|
282 |
exit(0);
|
|
|
283 |
break;
|
|
|
284 |
}
|
|
|
285 |
}
|
|
|
286 |
|
|
|
287 |
void idle(void)
|
|
|
288 |
{
|
|
|
289 |
for (int i=0; i<width*8 && !done; ++i)
|
|
|
290 |
{
|
|
|
291 |
Vec3f L = renderer->compute_pixel(pixel[0], pixel[1]);
|
|
|
292 |
film[pixel[0] + pixel[1] * width] = L;
|
|
|
293 |
|
|
|
294 |
//advance
|
|
|
295 |
++pixel[0];
|
|
|
296 |
|
|
|
297 |
if (pixel[0] == width)
|
|
|
298 |
{
|
|
|
299 |
pixel[0] = 0;
|
|
|
300 |
++pixel[1];
|
|
|
301 |
|
|
|
302 |
if (pixel[1] == height)
|
|
|
303 |
{
|
|
|
304 |
done = true;
|
|
|
305 |
glutIdleFunc(NULL);
|
|
|
306 |
}
|
|
|
307 |
}
|
|
|
308 |
}
|
|
|
309 |
|
|
|
310 |
glutPostRedisplay();
|
|
|
311 |
}
|
|
|
312 |
|
|
|
313 |
int main(int argc, char* argv[])
|
|
|
314 |
{
|
|
|
315 |
//make the scene
|
|
|
316 |
current = new scene;
|
|
|
317 |
|
|
|
318 |
//setup some materials
|
|
|
319 |
matte dull_white(Vec3f(0.5f, 0.5f, 0.5f));
|
|
|
320 |
matte dull_gray(Vec3f(0.4f, 0.4f, 0.4f));
|
|
|
321 |
matte dull_red(Vec3f(0.6f, 0.3f, 0.2f));
|
|
|
322 |
matte dull_green(Vec3f(0.3f, 0.6f, 0.2f));
|
|
|
323 |
matte dull_blue(Vec3f(0.2f, 0.2f, 0.6f));
|
|
|
324 |
|
|
|
325 |
plastic glossy_white(Vec3f(0.4f, 0.4f, 0.4f), Vec3f(0.5f), 20.f);
|
|
|
326 |
plastic glossy_purple(Vec3f(0.3f, 0.1f, 0.3f), Vec3f(0.65f), 8.f);
|
|
|
327 |
plastic glossy_yellow(Vec3f(0.3f, 0.3f, 0.0f), Vec3f(0.65f), 32.f);
|
|
|
328 |
|
|
|
329 |
//for exercise 2
|
|
|
330 |
glass clear(Vec3f(0.99f, 0.99f, 0.99f), 1.5f);
|
|
|
331 |
metal silver(Vec3f(0.9f, 0.9f, 0.9f), 22.f, 0.177f, 3.638f);
|
|
|
332 |
|
|
|
333 |
//setup cornell box 1mx1mx1m
|
|
|
334 |
mesh floor("../../data/cornell_box/floor.obj");
|
|
|
335 |
floor.set_material(&glossy_white);
|
|
|
336 |
current->insert(&floor);
|
|
|
337 |
|
|
|
338 |
mesh ceiling("../../data/cornell_box/ceiling.obj");
|
|
|
339 |
ceiling.set_material(&dull_gray);
|
|
|
340 |
current->insert(&ceiling);
|
|
|
341 |
|
|
|
342 |
mesh back("../../data/cornell_box/back.obj");
|
|
|
343 |
back.set_material(&silver);
|
|
|
344 |
current->insert(&back);
|
|
|
345 |
|
|
|
346 |
mesh left("../../data/cornell_box/left.obj");
|
|
|
347 |
left.set_material(&dull_red);
|
|
|
348 |
current->insert(&left);
|
|
|
349 |
|
|
|
350 |
mesh right("../../data/cornell_box/right.obj");
|
|
|
351 |
right.set_material(&dull_blue);
|
|
|
352 |
current->insert(&right);
|
|
|
353 |
|
|
|
354 |
//add some objects to the box
|
|
|
355 |
Mat4x4f tmp;
|
|
|
356 |
|
|
|
357 |
mesh box1("../../data/cornell_box/box1.obj");
|
|
|
358 |
tmp = rotation_Mat4x4f(YAXIS, -float(M_PI)/8.f);
|
|
|
359 |
tmp = translation_Mat4x4f(Vec3f(-0.3f,0.f,-0.05f)) * tmp;
|
|
|
360 |
box1.set_transform(tmp);
|
|
|
361 |
box1.set_material(&dull_green);
|
|
|
362 |
current->insert(&box1);
|
|
|
363 |
|
|
|
364 |
mesh box2("../../data/cornell_box/box2.obj");
|
|
|
365 |
tmp = translation_Mat4x4f(Vec3f(0.25f,0.f, -0.05f));
|
|
|
366 |
box2.set_transform(tmp);
|
|
|
367 |
box2.set_material(&glossy_purple);
|
|
|
368 |
current->insert(&box2);
|
|
|
369 |
|
|
|
370 |
mesh teapot("../../data/cornell_box/teapot1.obj");
|
|
|
371 |
tmp = rotation_Mat4x4f(YAXIS, float(M_PI/4.f));
|
|
|
372 |
tmp = translation_Mat4x4f(Vec3f(-0.25f,0.25f, -0.05)) * tmp;
|
|
|
373 |
teapot.set_transform(tmp);
|
|
|
374 |
teapot.set_material(&silver);
|
|
|
375 |
current->insert(&teapot);
|
|
|
376 |
|
|
|
377 |
mesh sphere1("../../data/cornell_box/sphere2.obj");
|
|
|
378 |
tmp = translation_Mat4x4f(Vec3f(0.25f,0.45f,-0.05f));
|
|
|
379 |
sphere1.set_transform(tmp);
|
|
|
380 |
sphere1.set_material(&clear);
|
|
|
381 |
current->insert(&sphere1);
|
|
|
382 |
|
|
|
383 |
mesh sphere2("../../data/cornell_box/sphere2.obj");
|
|
|
384 |
tmp = translation_Mat4x4f(Vec3f(0.22f,0.15f,0.25f));
|
|
|
385 |
sphere2.set_transform(tmp);
|
|
|
386 |
sphere2.set_material(&glossy_yellow);
|
|
|
387 |
//current->insert(&sphere2);
|
|
|
388 |
|
|
|
389 |
//light sources
|
|
|
390 |
mesh quad_light("../../data/cornell_box/quad.obj");
|
|
|
391 |
tmp = rotation_Mat4x4f(XAXIS, float(M_PI));
|
|
|
392 |
tmp = translation_Mat4x4f(Vec3f(0.f,0.99f,0.2f)) * tmp;
|
|
|
393 |
quad_light.set_transform(tmp);
|
|
|
394 |
quad_light.set_exitance(Vec3f(300,300,300));
|
|
|
395 |
current->insert(&quad_light);
|
|
|
396 |
|
|
|
397 |
mesh quad_light1("../../data/cornell_box/quad.obj");
|
|
|
398 |
tmp = rotation_Mat4x4f(XAXIS, float(M_PI));
|
|
|
399 |
tmp = translation_Mat4x4f(Vec3f(0.f,0.99f,0.2f)) * tmp;
|
|
|
400 |
quad_light1.set_transform(tmp);
|
|
|
401 |
quad_light1.set_exitance(Vec3f(0,400,0));
|
|
|
402 |
// current->insert(&quad_light1);
|
|
|
403 |
|
|
|
404 |
mesh quad_light2("../../data/cornell_box/quad.obj");
|
|
|
405 |
tmp = rotation_Mat4x4f(XAXIS, float(M_PI));
|
|
|
406 |
tmp = translation_Mat4x4f(Vec3f(-0.2f,0.99f,0.2f)) * tmp;
|
|
|
407 |
quad_light2.set_transform(tmp);
|
|
|
408 |
quad_light2.set_exitance(Vec3f(400,0,0));
|
|
|
409 |
// current->insert(&quad_light2);
|
|
|
410 |
|
|
|
411 |
mesh quad_light3("../../data/cornell_box/quad.obj");
|
|
|
412 |
tmp = rotation_Mat4x4f(XAXIS, float(M_PI));
|
|
|
413 |
tmp = translation_Mat4x4f(Vec3f(0.2f,0.99f,0.2f)) * tmp;
|
|
|
414 |
quad_light3.set_transform(tmp);
|
|
|
415 |
quad_light3.set_exitance(Vec3f(0,0,400));
|
|
|
416 |
// current->insert(&quad_light3);
|
|
|
417 |
|
|
|
418 |
omni omni_light(Vec3f(30.f));
|
|
|
419 |
omni_light.set_transform(translation_Mat4x4f(Vec3f(0.0f,0.95f,0.0f)));
|
|
|
420 |
//current->insert(&omni_light);
|
|
|
421 |
|
|
|
422 |
mesh sphere_light("../../data/cornell_box/small_sphere.obj");
|
|
|
423 |
sphere_light.set_transform(translation_Mat4x4f(Vec3f(0.f,0.95f,0.f)));
|
|
|
424 |
sphere_light.set_exitance(Vec3f(30.f/(4.f*float(M_PI)*0.01f*0.01f)));
|
|
|
425 |
//current->insert(&sphere_light);
|
|
|
426 |
|
|
|
427 |
//setup camera (eye, center, up, focal length)
|
|
|
428 |
camera pentax(
|
|
|
429 |
Vec3f(0.f,0.5f,2.0f),
|
|
|
430 |
Vec3f(0.f,0.5f,0.5f),
|
|
|
431 |
Vec3f(0,1,0),
|
|
|
432 |
0.035f);
|
|
|
433 |
|
|
|
434 |
current->set_camera(&pentax);
|
|
|
435 |
|
|
|
436 |
//build acceleration structure
|
|
|
437 |
current->initialize(8, 25);
|
|
|
438 |
|
|
|
439 |
//create the renderer
|
|
|
440 |
renderer = new pathtracer(width, height, true, 1);
|
|
|
441 |
renderer->set_scene(current);
|
|
|
442 |
|
|
|
443 |
//create the film
|
|
|
444 |
film = new Vec3f[width * height];
|
|
|
445 |
std::fill(film, film+width*height, Vec3f(0.3f));
|
|
|
446 |
image = new Vec3uc[width * height];
|
|
|
447 |
std::fill(image, image+width*height, Vec3uc(32,32,32));
|
|
|
448 |
|
|
|
449 |
//init glut
|
|
|
450 |
glutInit(&argc, argv);
|
|
|
451 |
glutInitWindowSize(width, height);
|
|
|
452 |
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
|
|
|
453 |
glutCreateWindow("Path tracer");
|
|
|
454 |
|
|
|
455 |
glutDisplayFunc(display);
|
|
|
456 |
glutReshapeFunc(reshape);
|
|
|
457 |
glutKeyboardFunc(keyboard);
|
|
|
458 |
glutSpecialFunc(special);
|
|
|
459 |
|
|
|
460 |
glutIdleFunc(idle);
|
|
|
461 |
|
|
|
462 |
//Turn the flow of control over to GLUT
|
|
|
463 |
glutMainLoop();
|
|
|
464 |
|
|
|
465 |
//clean up
|
|
|
466 |
delete current;
|
|
|
467 |
delete renderer;
|
|
|
468 |
|
|
|
469 |
return EXIT_SUCCESS;
|
|
|
470 |
}
|