667 |
khor |
1 |
/* ----------------------------------------------------------------------- *
|
|
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
|
|
3 |
* Copyright (C) the authors and DTU Informatics
|
|
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
|
|
5 |
* ----------------------------------------------------------------------- */
|
|
|
6 |
|
|
|
7 |
/** @file Mat4x4d.h
|
|
|
8 |
* @brief 4x4 double matrix class
|
|
|
9 |
*/
|
|
|
10 |
|
|
|
11 |
#ifndef __CGLA_MAT4X4D_H__
|
|
|
12 |
#define __CGLA_MAT4X4D_H__
|
|
|
13 |
|
|
|
14 |
#include "ExceptionStandard.h"
|
|
|
15 |
#include "CGLA.h"
|
|
|
16 |
#include "Vec3d.h"
|
|
|
17 |
#include "Vec3Hf.h"
|
|
|
18 |
#include "Vec4d.h"
|
|
|
19 |
#include "ArithSqMat4x4Float.h"
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
namespace CGLA {
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
/** \brief 4x4 double matrix.
|
|
|
26 |
|
|
|
27 |
This class is useful for transformations such as perspective projections
|
|
|
28 |
or translation where 3x3 matrices do not suffice. */
|
|
|
29 |
class Mat4x4d: public ArithSqMat4x4Float<Vec4d, Mat4x4d>
|
|
|
30 |
{
|
|
|
31 |
public:
|
|
|
32 |
|
|
|
33 |
/// Construct a Mat4x4d from four Vec4d vectors
|
|
|
34 |
Mat4x4d(Vec4d _a, Vec4d _b, Vec4d _c, Vec4d _d):
|
|
|
35 |
ArithSqMat4x4Float<Vec4d, Mat4x4d> (_a,_b,_c,_d) {}
|
|
|
36 |
|
|
|
37 |
/// Construct the nan matrix
|
|
|
38 |
Mat4x4d() {}
|
|
|
39 |
|
|
|
40 |
/// Construct a matrix with identical elements.
|
|
|
41 |
explicit Mat4x4d(double a): ArithSqMat4x4Float<Vec4d, Mat4x4d> (a) {}
|
|
|
42 |
};
|
|
|
43 |
|
|
|
44 |
/// Create a rotation _matrix. Rotates about one of the major axes.
|
|
|
45 |
Mat4x4d rotation_Mat4x4d(CGLA::Axis axis, float angle);
|
|
|
46 |
|
|
|
47 |
/// Create a translation matrix
|
|
|
48 |
Mat4x4d translation_Mat4x4d(const Vec3d&);
|
|
|
49 |
|
|
|
50 |
/// Create a scaling matrix.
|
|
|
51 |
Mat4x4d scaling_Mat4x4d(const Vec3d&);
|
|
|
52 |
|
|
|
53 |
/// Create an identity matrix.
|
|
|
54 |
inline Mat4x4d identity_Mat4x4d()
|
|
|
55 |
{
|
|
|
56 |
return Mat4x4d(Vec4d(1.0,0.0,0.0,0.0),
|
|
|
57 |
Vec4d(0.0,1.0,0.0,0.0),
|
|
|
58 |
Vec4d(0.0,0.0,1.0,0.0),
|
|
|
59 |
Vec4d(0.0,0.0,0.0,1.0));
|
|
|
60 |
}
|
|
|
61 |
|
|
|
62 |
/** Compute inverse assuming that the upper-left 3x3 sub-matrix is
|
|
|
63 |
orthonormal (which is the case if the transformation is only
|
|
|
64 |
a concatenation of rotations and translations).
|
|
|
65 |
*/
|
|
|
66 |
inline Mat4x4d invert_ortho(const Mat4x4d& m)
|
|
|
67 |
{
|
|
|
68 |
Vec3d rx(m[0][0], m[1][0], m[2][0]);
|
|
|
69 |
Vec3d ry(m[0][1], m[1][1], m[2][1]);
|
|
|
70 |
Vec3d rz(m[0][2], m[1][2], m[2][2]);
|
|
|
71 |
Vec3d t(m[0][3], m[1][3], m[2][3]);
|
|
|
72 |
|
|
|
73 |
return Mat4x4d(Vec4d(rx, -dot(t, rx)),
|
|
|
74 |
Vec4d(ry, -dot(t, ry)),
|
|
|
75 |
Vec4d(rz, -dot(t, rz)),
|
|
|
76 |
Vec4d(0.0, 0.0, 0.0, 1.0));
|
|
|
77 |
}
|
|
|
78 |
}
|
|
|
79 |
#endif
|
|
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|