667 |
khor |
1 |
/* ----------------------------------------------------------------------- *
|
|
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
|
|
3 |
* Copyright (C) the authors and DTU Informatics
|
|
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
|
|
5 |
* ----------------------------------------------------------------------- */
|
|
|
6 |
|
|
|
7 |
/** @file Mat4x4f.h
|
|
|
8 |
* @brief 4x4 float matrix class
|
|
|
9 |
*/
|
|
|
10 |
|
|
|
11 |
#ifndef __CGLA_MAT4X4_H__
|
|
|
12 |
#define __CGLA_MAT4X4_H__
|
|
|
13 |
|
|
|
14 |
#include "ExceptionStandard.h"
|
|
|
15 |
#include "CGLA.h"
|
|
|
16 |
#include "Vec3f.h"
|
|
|
17 |
#include "Vec3Hf.h"
|
|
|
18 |
#include "Vec4f.h"
|
|
|
19 |
#include "ArithSqMat4x4Float.h"
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
namespace CGLA
|
|
|
23 |
{
|
|
|
24 |
|
|
|
25 |
/** \brief 4x4 float matrix.
|
|
|
26 |
This class is useful for transformations such as perspective projections
|
|
|
27 |
or translation where 3x3 matrices do not suffice. */
|
|
|
28 |
class Mat4x4f: public ArithSqMat4x4Float<Vec4f, Mat4x4f>
|
|
|
29 |
{
|
|
|
30 |
public:
|
|
|
31 |
|
|
|
32 |
/// Construct a Mat4x4f from four Vec4f vectors
|
|
|
33 |
Mat4x4f(Vec4f _a, Vec4f _b, Vec4f _c, Vec4f _d):
|
|
|
34 |
ArithSqMat4x4Float<Vec4f, Mat4x4f> (_a,_b,_c,_d) {}
|
|
|
35 |
|
|
|
36 |
/// Construct the NaN matrix
|
|
|
37 |
Mat4x4f() {}
|
|
|
38 |
|
|
|
39 |
/// Construct a matrix with identical elements.
|
|
|
40 |
explicit Mat4x4f(float a) : ArithSqMat4x4Float<Vec4f, Mat4x4f> (a) {}
|
|
|
41 |
};
|
|
|
42 |
|
|
|
43 |
/// Create a rotation _matrix. Rotates about one of the major axes.
|
|
|
44 |
Mat4x4f rotation_Mat4x4f(CGLA::Axis axis, float angle);
|
|
|
45 |
|
|
|
46 |
/// Create a translation matrix
|
|
|
47 |
Mat4x4f translation_Mat4x4f(const Vec3f&);
|
|
|
48 |
|
|
|
49 |
/// Create a scaling matrix.
|
|
|
50 |
Mat4x4f scaling_Mat4x4f(const Vec3f&);
|
|
|
51 |
|
|
|
52 |
/// Creates a perspective projection similar to gluPerspective
|
|
|
53 |
/// Description from gluPerspective: perspective_Mat4x4f specifies a viewing frustum into
|
|
|
54 |
/// the world coordinate system. In general, the aspect ratio in perspective_Mat4x4f
|
|
|
55 |
/// should match the aspect ratio of the associated viewport. For example, aspect = 2.0
|
|
|
56 |
/// means the viewer's angle of view is twice as wide in x as it is in y. If the viewport
|
|
|
57 |
/// is twice as wide as it is tall, it displays the image without distortion.
|
|
|
58 |
Mat4x4f perspective_Mat4x4f(float fovy, float aspect, float zNear, float zFar);
|
|
|
59 |
|
|
|
60 |
/// Creates a perspective matrix similar to glFrustum
|
|
|
61 |
Mat4x4f frustum_Mat4x4f(float left,
|
|
|
62 |
float right,
|
|
|
63 |
float bottom,
|
|
|
64 |
float top,
|
|
|
65 |
float nearVal,
|
|
|
66 |
float farVal);
|
|
|
67 |
|
|
|
68 |
/// Creates an orthographic projection matrix (similar to glOrtho)
|
|
|
69 |
Mat4x4f ortho_Mat4x4f(float left,
|
|
|
70 |
float right,
|
|
|
71 |
float bottom,
|
|
|
72 |
float top,
|
|
|
73 |
float nearVal,
|
|
|
74 |
float farVal);
|
|
|
75 |
|
|
|
76 |
/// Creates a 2D orthographic projection matrix (similar to gluOrtho2D)
|
|
|
77 |
Mat4x4f ortho2D_Mat4x4f(float left, float right, float bottom, float top);
|
|
|
78 |
|
|
|
79 |
/// Creates a view matrix similar to gluLookAt
|
|
|
80 |
Mat4x4f lookAt_Mat4x4f(const Vec3f& eye, const Vec3f& at, const Vec3f& up);
|
|
|
81 |
|
|
|
82 |
/// Create an identity matrix.
|
|
|
83 |
inline Mat4x4f identity_Mat4x4f()
|
|
|
84 |
{
|
|
|
85 |
return Mat4x4f(Vec4f(1.0f,0.0f,0.0f,0.0f),
|
|
|
86 |
Vec4f(0.0f,1.0f,0.0f,0.0f),
|
|
|
87 |
Vec4f(0.0f,0.0f,1.0f,0.0f),
|
|
|
88 |
Vec4f(0.0f,0.0f,0.0f,1.0f));
|
|
|
89 |
}
|
|
|
90 |
|
|
|
91 |
/** Compute inverse assuming that the upper-left 3x3 sub-matrix is
|
|
|
92 |
orthonormal (which is the case if the transformation is only
|
|
|
93 |
a concatenation of rotations and translations).
|
|
|
94 |
*/
|
|
|
95 |
inline Mat4x4f invert_ortho(const Mat4x4f& m)
|
|
|
96 |
{
|
|
|
97 |
Vec3f rx(m[0][0], m[1][0], m[2][0]);
|
|
|
98 |
Vec3f ry(m[0][1], m[1][1], m[2][1]);
|
|
|
99 |
Vec3f rz(m[0][2], m[1][2], m[2][2]);
|
|
|
100 |
Vec3f t(m[0][3], m[1][3], m[2][3]);
|
|
|
101 |
|
|
|
102 |
return Mat4x4f(Vec4f(rx, -dot(t, rx)),
|
|
|
103 |
Vec4f(ry, -dot(t, ry)),
|
|
|
104 |
Vec4f(rz, -dot(t, rz)),
|
|
|
105 |
Vec4f(0.0f, 0.0f, 0.0f, 1.0f));
|
|
|
106 |
}
|
|
|
107 |
}
|
|
|
108 |
#endif
|
|
|
109 |
|
|
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
|
115 |
|