688 |
khor |
1 |
/* ----------------------------------------------------------------------- *
|
|
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
|
|
3 |
* Copyright (C) the authors and DTU Informatics
|
|
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
|
|
5 |
* ----------------------------------------------------------------------- */
|
|
|
6 |
|
|
|
7 |
/** @file ArithMatFloat.h
|
|
|
8 |
* Abstract matrix class
|
|
|
9 |
*/
|
|
|
10 |
|
|
|
11 |
#ifndef __CGLA_ARITHMATFLOAT_H__
|
|
|
12 |
#define __CGLA_ARITHMATFLOAT_H__
|
|
|
13 |
|
|
|
14 |
#include <vector>
|
|
|
15 |
#include <iostream>
|
|
|
16 |
#include <numeric>
|
|
|
17 |
|
|
|
18 |
#include "CGLA.h"
|
|
|
19 |
|
|
|
20 |
|
|
|
21 |
namespace CGLA
|
|
|
22 |
{
|
|
|
23 |
|
|
|
24 |
/** \brief Basic class template for matrices.
|
|
|
25 |
|
|
|
26 |
In this template a matrix is defined as an array of vectors. This may
|
|
|
27 |
not in all cases be the most efficient but it has the advantage that
|
|
|
28 |
it is possible to use the double subscripting notation:
|
|
|
29 |
|
|
|
30 |
T x = m[i][j]
|
|
|
31 |
|
|
|
32 |
This template should be used through inheritance just like the
|
|
|
33 |
vector template */
|
|
|
34 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
35 |
class ArithMatFloat
|
|
|
36 |
{
|
|
|
37 |
public:
|
|
|
38 |
|
|
|
39 |
/// Horizontal vector type
|
|
|
40 |
typedef HVT HVectorType;
|
|
|
41 |
|
|
|
42 |
/// Vertical vector type
|
|
|
43 |
typedef VVT VVectorType;
|
|
|
44 |
|
|
|
45 |
/// The type of a matrix element
|
|
|
46 |
typedef typename HVT::ScalarType ScalarType;
|
|
|
47 |
|
|
|
48 |
protected:
|
|
|
49 |
|
|
|
50 |
/// The actual contents of the matrix.
|
|
|
51 |
HVT data[ROWS];
|
|
|
52 |
|
|
|
53 |
protected:
|
|
|
54 |
|
|
|
55 |
/// Construct 0 matrix
|
|
|
56 |
ArithMatFloat()
|
|
|
57 |
{
|
|
|
58 |
#ifndef NDEBUG
|
|
|
59 |
std::fill_n(data, ROWS, HVT(CGLA_INIT_VALUE));
|
|
|
60 |
#endif
|
|
|
61 |
}
|
|
|
62 |
|
|
|
63 |
/// Construct a matrix where all entries are the same.
|
|
|
64 |
explicit ArithMatFloat(ScalarType x)
|
|
|
65 |
{
|
|
|
66 |
std::fill_n(data, ROWS, HVT(x));
|
|
|
67 |
}
|
|
|
68 |
|
|
|
69 |
/// Construct a matrix where all rows are the same.
|
|
|
70 |
explicit ArithMatFloat(HVT _a)
|
|
|
71 |
{
|
|
|
72 |
std::fill_n(data, ROWS, _a);
|
|
|
73 |
}
|
|
|
74 |
|
|
|
75 |
/// Construct a matrix with two rows.
|
|
|
76 |
ArithMatFloat(HVT _a, HVT _b)
|
|
|
77 |
{
|
|
|
78 |
assert(ROWS==2);
|
|
|
79 |
data[0] = _a;
|
|
|
80 |
data[1] = _b;
|
|
|
81 |
}
|
|
|
82 |
|
|
|
83 |
/// Construct a matrix with three rows.
|
|
|
84 |
ArithMatFloat(HVT _a, HVT _b, HVT _c)
|
|
|
85 |
{
|
|
|
86 |
assert(ROWS==3);
|
|
|
87 |
data[0] = _a;
|
|
|
88 |
data[1] = _b;
|
|
|
89 |
data[2] = _c;
|
|
|
90 |
}
|
|
|
91 |
|
|
|
92 |
/// Construct a matrix with four rows.
|
|
|
93 |
ArithMatFloat(HVT _a, HVT _b, HVT _c, HVT _d)
|
|
|
94 |
{
|
|
|
95 |
assert(ROWS==4);
|
|
|
96 |
data[0] = _a;
|
|
|
97 |
data[1] = _b;
|
|
|
98 |
data[2] = _c;
|
|
|
99 |
data[3] = _d;
|
|
|
100 |
}
|
|
|
101 |
|
|
|
102 |
public:
|
|
|
103 |
|
|
|
104 |
/// Get vertical dimension of matrix
|
|
|
105 |
static unsigned int get_v_dim() {return VVT::get_dim();}
|
|
|
106 |
|
|
|
107 |
/// Get horizontal dimension of matrix
|
|
|
108 |
static unsigned int get_h_dim() {return HVT::get_dim();}
|
|
|
109 |
|
|
|
110 |
|
|
|
111 |
/** Get const pointer to data array.
|
|
|
112 |
This function may be useful when interfacing with some other API
|
|
|
113 |
such as OpenGL (TM). */
|
|
|
114 |
const ScalarType* get() const
|
|
|
115 |
{
|
|
|
116 |
return data[0].get();
|
|
|
117 |
}
|
|
|
118 |
|
|
|
119 |
/** Get pointer to data array.
|
|
|
120 |
This function may be useful when interfacing with some other API
|
|
|
121 |
such as OpenGL (TM). */
|
|
|
122 |
ScalarType* get()
|
|
|
123 |
{
|
|
|
124 |
return data[0].get();
|
|
|
125 |
}
|
|
|
126 |
|
|
|
127 |
//----------------------------------------------------------------------
|
|
|
128 |
// index operators
|
|
|
129 |
//----------------------------------------------------------------------
|
|
|
130 |
|
|
|
131 |
/// Const index operator. Returns i'th row of matrix.
|
|
|
132 |
const HVT& operator [] ( unsigned int i ) const
|
|
|
133 |
{
|
|
|
134 |
assert(i<ROWS);
|
|
|
135 |
return data[i];
|
|
|
136 |
}
|
|
|
137 |
|
|
|
138 |
/// Non-const index operator. Returns i'th row of matrix.
|
|
|
139 |
HVT& operator [] ( unsigned int i )
|
|
|
140 |
{
|
|
|
141 |
assert(i<ROWS);
|
|
|
142 |
return data[i];
|
|
|
143 |
}
|
|
|
144 |
|
|
|
145 |
//----------------------------------------------------------------------
|
|
|
146 |
|
|
|
147 |
/// Equality operator.
|
|
|
148 |
bool operator==(const MT& v) const
|
|
|
149 |
{
|
|
|
150 |
return std::inner_product(data, &data[ROWS], &v[0], true,
|
|
|
151 |
std::logical_and<bool>(), std::equal_to<HVT>());
|
|
|
152 |
}
|
|
|
153 |
|
|
|
154 |
/// Inequality operator.
|
|
|
155 |
bool operator!=(const MT& v) const
|
|
|
156 |
{
|
|
|
157 |
return !(*this==v);
|
|
|
158 |
}
|
|
|
159 |
|
|
|
160 |
//----------------------------------------------------------------------
|
|
|
161 |
|
|
|
162 |
/// Multiply scalar onto matrix. All entries are multiplied by scalar.
|
|
|
163 |
const MT operator * (ScalarType k) const
|
|
|
164 |
{
|
|
|
165 |
MT v_new;
|
|
|
166 |
std::transform(data, &data[ROWS], &v_new[0], std::bind2nd(std::multiplies<HVT>(), HVT(k)));
|
|
|
167 |
return v_new;
|
|
|
168 |
}
|
|
|
169 |
|
|
|
170 |
/// Divide all entries in matrix by scalar.
|
|
|
171 |
const MT operator / (ScalarType k) const
|
|
|
172 |
{
|
|
|
173 |
MT v_new;
|
|
|
174 |
std::transform(data, &data[ROWS], &v_new[0], std::bind2nd(std::divides<HVT>(), HVT(k)));
|
|
|
175 |
return v_new;
|
|
|
176 |
}
|
|
|
177 |
|
|
|
178 |
/// Assignment multiplication of matrix by scalar.
|
|
|
179 |
const MT& operator *=(ScalarType k)
|
|
|
180 |
{
|
|
|
181 |
std::transform(data, &data[ROWS], data, std::bind2nd(std::multiplies<HVT>(), HVT(k)));
|
|
|
182 |
return static_cast<const MT&>(*this);
|
|
|
183 |
}
|
|
|
184 |
|
|
|
185 |
/// Assignment division of matrix by scalar.
|
|
|
186 |
const MT& operator /=(ScalarType k)
|
|
|
187 |
{
|
|
|
188 |
std::transform(data, &data[ROWS], data, std::bind2nd(std::divides<HVT>(), HVT(k)));
|
|
|
189 |
return static_cast<const MT&>(*this);
|
|
|
190 |
}
|
|
|
191 |
|
|
|
192 |
//----------------------------------------------------------------------
|
|
|
193 |
|
|
|
194 |
/// Add two matrices.
|
|
|
195 |
const MT operator + (const MT& m1) const
|
|
|
196 |
{
|
|
|
197 |
MT v_new;
|
|
|
198 |
std::transform(data, &data[ROWS], &m1[0], &v_new[0], std::plus<HVT>());
|
|
|
199 |
return v_new;
|
|
|
200 |
}
|
|
|
201 |
|
|
|
202 |
/// Subtract two matrices.
|
|
|
203 |
const MT operator - (const MT& m1) const
|
|
|
204 |
{
|
|
|
205 |
MT v_new;
|
|
|
206 |
std::transform(data, &data[ROWS], &m1[0], &v_new[0], std::minus<HVT>());
|
|
|
207 |
return v_new;
|
|
|
208 |
}
|
|
|
209 |
|
|
|
210 |
/// Assigment addition of matrices.
|
|
|
211 |
const MT& operator +=(const MT& v)
|
|
|
212 |
{
|
|
|
213 |
std::transform(data, &data[ROWS], &v[0], data, std::plus<HVT>());
|
|
|
214 |
return static_cast<const MT&>(*this);
|
|
|
215 |
}
|
|
|
216 |
|
|
|
217 |
/// Assigment subtraction of matrices.
|
|
|
218 |
const MT& operator -=(const MT& v)
|
|
|
219 |
{
|
|
|
220 |
std::transform(data, &data[ROWS], &v[0], data, std::minus<HVT>());
|
|
|
221 |
return static_cast<const MT&>(*this);
|
|
|
222 |
}
|
|
|
223 |
|
|
|
224 |
//----------------------------------------------------------------------
|
|
|
225 |
|
|
|
226 |
/// Negate matrix.
|
|
|
227 |
const MT operator - () const
|
|
|
228 |
{
|
|
|
229 |
MT v_new;
|
|
|
230 |
std::transform(data, &data[ROWS], &v_new[0], std::negate<HVT>());
|
|
|
231 |
return v_new;
|
|
|
232 |
}
|
|
|
233 |
};
|
|
|
234 |
|
|
|
235 |
/// Multiply scalar onto matrix
|
|
|
236 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
237 |
inline const MT operator * (double k, const ArithMatFloat<VVT,HVT,MT,ROWS>& v)
|
|
|
238 |
{
|
|
|
239 |
return v * k;
|
|
|
240 |
}
|
|
|
241 |
|
|
|
242 |
/// Multiply scalar onto matrix
|
|
|
243 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
244 |
inline const MT operator * (float k, const ArithMatFloat<VVT,HVT,MT,ROWS>& v)
|
|
|
245 |
{
|
|
|
246 |
return v * k;
|
|
|
247 |
}
|
|
|
248 |
|
|
|
249 |
/// Multiply scalar onto matrix
|
|
|
250 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
251 |
inline const MT operator * (int k, const ArithMatFloat<VVT,HVT,MT,ROWS>& v)
|
|
|
252 |
{
|
|
|
253 |
return v * k;
|
|
|
254 |
}
|
|
|
255 |
|
|
|
256 |
/// Multiply vector onto matrix
|
|
|
257 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
258 |
inline VVT operator*(const ArithMatFloat<VVT,HVT,MT,ROWS>& m,const HVT& v)
|
|
|
259 |
{
|
|
|
260 |
VVT v2;
|
|
|
261 |
for(unsigned int i=0;i<ROWS;i++) v2[i] = dot(m[i], v);
|
|
|
262 |
return v2;
|
|
|
263 |
}
|
|
|
264 |
|
|
|
265 |
|
|
|
266 |
#ifndef WIN32
|
|
|
267 |
/** Multiply two arbitrary matrices.
|
|
|
268 |
In principle, this function could return a matrix, but in general
|
|
|
269 |
the new matrix will be of a type that is different from either of
|
|
|
270 |
the two matrices that are multiplied together. We do not want to
|
|
|
271 |
return an ArithMatFloat - so it seems best to let the return value be
|
|
|
272 |
a reference arg.
|
|
|
273 |
|
|
|
274 |
This template can only be instantiated if the dimensions of the
|
|
|
275 |
matrices match -- i.e. if the multiplication can actually be
|
|
|
276 |
carried out. This is more type safe than the win32 version below.
|
|
|
277 |
*/
|
|
|
278 |
|
|
|
279 |
template <class VVT, class HVT,
|
|
|
280 |
class HV1T, class VV2T,
|
|
|
281 |
class MT1, class MT2, class MT,
|
|
|
282 |
unsigned int ROWS1, unsigned int ROWS2>
|
|
|
283 |
inline void mul(const ArithMatFloat<VVT,HV1T,MT1,ROWS1>& m1,
|
|
|
284 |
const ArithMatFloat<VV2T,HVT,MT2,ROWS2>& m2,
|
|
|
285 |
ArithMatFloat<VVT,HVT,MT,ROWS1>& m)
|
|
|
286 |
{
|
|
|
287 |
unsigned int cols = ArithMatFloat<VVT,HVT,MT,ROWS1>::get_h_dim();
|
|
|
288 |
for(unsigned int i=0;i<ROWS1;i++)
|
|
|
289 |
for(unsigned int j=0;j<cols;j++)
|
|
|
290 |
{
|
|
|
291 |
m[i][j] = 0;
|
|
|
292 |
for(unsigned int k=0;k<ROWS2;k++)
|
|
|
293 |
m[i][j] += m1[i][k] * m2[k][j];
|
|
|
294 |
}
|
|
|
295 |
}
|
|
|
296 |
|
|
|
297 |
|
|
|
298 |
/** Transpose. See the discussion on mul if you are curious as to why
|
|
|
299 |
I don't simply return the transpose. */
|
|
|
300 |
template <class VVT, class HVT, class M1T, class M2T, unsigned int ROWS, unsigned int COLS>
|
|
|
301 |
inline void transpose(const ArithMatFloat<VVT,HVT,M1T,ROWS>& m,
|
|
|
302 |
ArithMatFloat<HVT,VVT,M2T,COLS>& m_new)
|
|
|
303 |
{
|
|
|
304 |
for(unsigned int i=0;i<M2T::get_v_dim();++i)
|
|
|
305 |
for(unsigned int j=0;j<M2T::get_h_dim();++j)
|
|
|
306 |
m_new[i][j] = m[j][i];
|
|
|
307 |
}
|
|
|
308 |
|
|
|
309 |
#else
|
|
|
310 |
|
|
|
311 |
//----------------- win32 -------------------------------
|
|
|
312 |
// Visual studio is not good at deducing the args. to these template functions.
|
|
|
313 |
// This means that you can call the two functions below with
|
|
|
314 |
// matrices of wrong dimension.
|
|
|
315 |
|
|
|
316 |
template <class M1, class M2, class M>
|
|
|
317 |
inline void mul(const M1& m1, const M2& m2, M& m)
|
|
|
318 |
{
|
|
|
319 |
unsigned int cols = M::get_h_dim();
|
|
|
320 |
unsigned int rows1 = M1::get_v_dim();
|
|
|
321 |
unsigned int rows2 = M2::get_v_dim();
|
|
|
322 |
|
|
|
323 |
for(unsigned int i=0;i<rows1;++i)
|
|
|
324 |
for(unsigned int j=0;j<cols;++j)
|
|
|
325 |
{
|
|
|
326 |
m[i][j] = 0;
|
|
|
327 |
for(unsigned int k=0;k<rows2;++k)
|
|
|
328 |
m[i][j] += m1[i][k] * m2[k][j];
|
|
|
329 |
}
|
|
|
330 |
}
|
|
|
331 |
|
|
|
332 |
|
|
|
333 |
/** Transpose. See the discussion on mul if you are curious as to why
|
|
|
334 |
I don't simply return the transpose. */
|
|
|
335 |
template <class M1, class M2>
|
|
|
336 |
inline void transpose(const M1& m1, M2& m2)
|
|
|
337 |
{
|
|
|
338 |
for(unsigned int i=0;i<M2::get_v_dim();++i)
|
|
|
339 |
for(unsigned int j=0;j<M2::get_h_dim();++j)
|
|
|
340 |
m2[i][j] = m1[j][i];
|
|
|
341 |
}
|
|
|
342 |
|
|
|
343 |
#endif
|
|
|
344 |
|
|
|
345 |
/** Compute the outer product of a and b: a * transpose(b). This is
|
|
|
346 |
a matrix with a::rows and b::columns. */
|
|
|
347 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
348 |
void outer_product(const VVT& a, const HVT& b,
|
|
|
349 |
ArithMatFloat<VVT,HVT,MT,ROWS>& m)
|
|
|
350 |
{
|
|
|
351 |
unsigned int R = VVT::get_dim();
|
|
|
352 |
unsigned int C = HVT::get_dim();
|
|
|
353 |
for(unsigned int i=0;i<R;++i)
|
|
|
354 |
for(unsigned int j=0;j<C;++j)
|
|
|
355 |
{
|
|
|
356 |
m[i][j] = a[i] * b[j];
|
|
|
357 |
}
|
|
|
358 |
}
|
|
|
359 |
|
|
|
360 |
/** Compute the outer product of a and b using an arbitrary
|
|
|
361 |
binary operation: op(a, transpose(b)). This is
|
|
|
362 |
a matrix with a::rows and b::columns. */
|
|
|
363 |
template <class VVT, class HVT, class MT, int ROWS, class BinOp>
|
|
|
364 |
void outer_product(const VVT& a, const HVT& b,
|
|
|
365 |
ArithMatFloat<VVT,HVT,MT,ROWS>& m, BinOp op)
|
|
|
366 |
{
|
|
|
367 |
int R = VVT::get_dim();
|
|
|
368 |
int C = HVT::get_dim();
|
|
|
369 |
for(int i=0;i<R;++i)
|
|
|
370 |
for(int j=0;j<C;++j)
|
|
|
371 |
{
|
|
|
372 |
m[i][j] = op(a[i], b[j]);
|
|
|
373 |
}
|
|
|
374 |
}
|
|
|
375 |
|
|
|
376 |
/** Copy a matrix to another matrix, cell by cell.
|
|
|
377 |
This conversion that takes a const matrix as first argument
|
|
|
378 |
(source) and a non-const matrix as second argument
|
|
|
379 |
(destination). The contents of the first matrix is simply copied
|
|
|
380 |
to the second matrix.
|
|
|
381 |
|
|
|
382 |
However, if the first matrix is larger than the second,
|
|
|
383 |
the cells outside the range of the destination are simply not
|
|
|
384 |
copied. If the destination is larger, the cells outside the
|
|
|
385 |
range of the source matrix are not touched.
|
|
|
386 |
|
|
|
387 |
An obvious use of this function is to copy a 3x3 rotation matrix
|
|
|
388 |
into a 4x4 transformation matrix.
|
|
|
389 |
*/
|
|
|
390 |
|
|
|
391 |
template <class M1, class M2>
|
|
|
392 |
void copy_matrix(const M1& inmat, M2& outmat)
|
|
|
393 |
{
|
|
|
394 |
const unsigned int R = std::min(inmat.get_v_dim(), outmat.get_v_dim());
|
|
|
395 |
const unsigned int C = std::min(inmat.get_h_dim(), outmat.get_h_dim());
|
|
|
396 |
for(unsigned int i=0;i<R;++i)
|
|
|
397 |
for(unsigned int j=0;j<C;++j)
|
|
|
398 |
outmat[i][j] = inmat[i][j];
|
|
|
399 |
}
|
|
|
400 |
|
|
|
401 |
/** Put to operator */
|
|
|
402 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
403 |
inline std::ostream&
|
|
|
404 |
operator<<(std::ostream&os, const ArithMatFloat<VVT,HVT,MT,ROWS>& m)
|
|
|
405 |
{
|
|
|
406 |
os << "[\n";
|
|
|
407 |
for(unsigned int i=0;i<ROWS;i++) os << " " << m[i] << "\n";
|
|
|
408 |
os << "]\n";
|
|
|
409 |
return os;
|
|
|
410 |
}
|
|
|
411 |
|
|
|
412 |
/** Get from operator */
|
|
|
413 |
template <class VVT, class HVT, class MT, unsigned int ROWS>
|
|
|
414 |
inline std::istream& operator>>(std::istream&is,
|
|
|
415 |
const ArithMatFloat<VVT,HVT,MT,ROWS>& m)
|
|
|
416 |
{
|
|
|
417 |
for(unsigned int i=0;i<ROWS;i++) is>>m[i];
|
|
|
418 |
return is;
|
|
|
419 |
}
|
|
|
420 |
}
|
|
|
421 |
#endif
|