667 |
khor |
1 |
/* ----------------------------------------------------------------------- *
|
|
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
|
|
3 |
* Copyright (C) the authors and DTU Informatics
|
|
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
|
|
5 |
* ----------------------------------------------------------------------- */
|
|
|
6 |
|
|
|
7 |
|
|
|
8 |
#include "mesh_optimization.h"
|
|
|
9 |
|
|
|
10 |
#include <cfloat>
|
|
|
11 |
#include <queue>
|
|
|
12 |
#include <vector>
|
|
|
13 |
|
|
|
14 |
#include "../CGLA/Vec3d.h"
|
|
|
15 |
#include "../Geometry/Implicit.h"
|
|
|
16 |
//#include "Manifold.h"
|
|
|
17 |
#include "AttributeVector.h"
|
|
|
18 |
#include "triangulate.h"
|
|
|
19 |
#include "smooth.h"
|
|
|
20 |
|
|
|
21 |
namespace HMesh
|
|
|
22 |
{
|
|
|
23 |
using namespace std;
|
|
|
24 |
using namespace CGLA;
|
|
|
25 |
using namespace Geometry;
|
|
|
26 |
|
|
|
27 |
// Small utility functions
|
|
|
28 |
namespace
|
|
|
29 |
{
|
|
|
30 |
class LineSeg
|
|
|
31 |
{
|
|
|
32 |
const Vec3d p0;
|
|
|
33 |
const Vec3d p1;
|
|
|
34 |
const float l;
|
|
|
35 |
const CGLA::Vec3d dir;
|
|
|
36 |
public:
|
|
|
37 |
|
|
|
38 |
LineSeg(const Vec3d& _p0, const Vec3d& _p1):
|
|
|
39 |
p0(_p0), p1(_p1), l(length(p1-p0)), dir((p1-p0)/l) {}
|
|
|
40 |
|
|
|
41 |
bool inseg(const Vec3d& p) const
|
|
|
42 |
{
|
|
|
43 |
double t = dot(dir, p-p0);
|
|
|
44 |
if(t<0)
|
|
|
45 |
return false;
|
|
|
46 |
if(t>l)
|
|
|
47 |
return false;
|
|
|
48 |
return true;
|
|
|
49 |
}
|
|
|
50 |
};
|
|
|
51 |
|
|
|
52 |
Vec3d compute_normal(Vec3d* v)
|
|
|
53 |
{
|
|
|
54 |
Vec3d norm;
|
|
|
55 |
for(int i = 0; i < 4; ++i)
|
|
|
56 |
{
|
|
|
57 |
norm[0] += (v[i][1]-v[(i+1)%4][1])*(v[i][2]+v[(i+1)%4][2]);
|
|
|
58 |
norm[1] += (v[i][2]-v[(i+1)%4][2])*(v[i][0]+v[(i+1)%4][0]);
|
|
|
59 |
norm[2] += (v[i][0]-v[(i+1)%4][0])*(v[i][1]+v[(i+1)%4][1]);
|
|
|
60 |
}
|
|
|
61 |
float l = norm.length();
|
|
|
62 |
if(l>0.0f)
|
|
|
63 |
norm /= l;
|
|
|
64 |
return norm;
|
|
|
65 |
}
|
|
|
66 |
|
|
|
67 |
bool would_flip(const Manifold& m, HalfEdgeID h)
|
|
|
68 |
{
|
|
|
69 |
Walker w = m.walker(h);
|
|
|
70 |
|
|
|
71 |
VertexID hv = w.vertex();
|
|
|
72 |
VertexID hov = w.opp().vertex();
|
|
|
73 |
VertexID hnv = w.next().vertex();
|
|
|
74 |
VertexID honv = w.opp().next().vertex();
|
|
|
75 |
|
|
|
76 |
Vec3d v[4];
|
|
|
77 |
v[0] = Vec3d(m.pos(hv));
|
|
|
78 |
v[1] = Vec3d(m.pos(hov));
|
|
|
79 |
v[2] = Vec3d(m.pos(hnv));
|
|
|
80 |
v[3] = Vec3d(m.pos(honv));
|
|
|
81 |
|
|
|
82 |
Vec3d dir = compute_normal(v);
|
|
|
83 |
|
|
|
84 |
Vec3d n1a = cross(v[3]-v[0], v[2]-v[0]);
|
|
|
85 |
Vec3d n2a = cross(v[2]-v[1], v[3]-v[1]);
|
|
|
86 |
|
|
|
87 |
if(dot(normalize(n1a), dir) < 0)
|
|
|
88 |
return true;
|
|
|
89 |
if(dot(normalize(n2a), dir) < 0)
|
|
|
90 |
return true;
|
|
|
91 |
return false;
|
|
|
92 |
}
|
|
|
93 |
}
|
|
|
94 |
|
|
|
95 |
|
|
|
96 |
double ValencyEnergy::delta_energy(const Manifold& m, HalfEdgeID h) const
|
|
|
97 |
{
|
|
|
98 |
Walker w = m.walker(h);
|
|
|
99 |
|
|
|
100 |
VertexID v1 = w.opp().vertex();
|
|
|
101 |
VertexID v2 = w.vertex();
|
|
|
102 |
VertexID vo1 = w.next().vertex();
|
|
|
103 |
VertexID vo2 = w.opp().next().vertex();
|
|
|
104 |
|
|
|
105 |
int val1 = valency(m, v1);
|
|
|
106 |
int val2 = valency(m, v2);
|
|
|
107 |
int valo1 = valency(m, vo1);
|
|
|
108 |
int valo2 = valency(m, vo2);
|
|
|
109 |
|
|
|
110 |
// The optimal valency is four for a boundary vertex
|
|
|
111 |
// and six elsewhere.
|
|
|
112 |
int t1 = boundary(m, v1) ? 4 : 6;
|
|
|
113 |
int t2 = boundary(m, v2) ? 4 : 6;
|
|
|
114 |
int to1 = boundary(m, vo1) ? 4 : 6;
|
|
|
115 |
int to2 = boundary(m, vo2) ? 4 : 6;
|
|
|
116 |
|
|
|
117 |
int before =
|
|
|
118 |
sqr(val1-t1)+sqr(val2-t2)+
|
|
|
119 |
sqr(valo1-to1)+sqr(valo2-to2);
|
|
|
120 |
int after =
|
|
|
121 |
sqr(valo1+1-to1)+sqr(val1-1-t1)+
|
|
|
122 |
sqr(val2-1-t2)+sqr(valo2+1-to2);
|
|
|
123 |
|
|
|
124 |
return static_cast<double>(after-before);
|
|
|
125 |
}
|
|
|
126 |
|
|
|
127 |
|
|
|
128 |
class RandomEnergy: public EnergyFun
|
|
|
129 |
{
|
|
|
130 |
public:
|
|
|
131 |
double delta_energy(const Manifold& m, HalfEdgeID he) const
|
|
|
132 |
{
|
|
|
133 |
return static_cast<double>(gel_rand()/static_cast<float>(GEL_RAND_MAX));
|
|
|
134 |
}
|
|
|
135 |
};
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
double MinAngleEnergy::min_angle(const Vec3d& v0, const Vec3d& v1, const Vec3d& v2) const
|
|
|
139 |
{
|
|
|
140 |
Vec3d a = normalize(v1-v0);
|
|
|
141 |
Vec3d b = normalize(v2-v1);
|
|
|
142 |
Vec3d c = normalize(v0-v2);
|
|
|
143 |
|
|
|
144 |
return min(dot(a,-c), min(dot(b,-a), dot(c,-b)));
|
|
|
145 |
}
|
|
|
146 |
double MinAngleEnergy::delta_energy(const Manifold& m, HalfEdgeID h) const
|
|
|
147 |
{
|
|
|
148 |
Walker w = m.walker(h);
|
|
|
149 |
|
|
|
150 |
VertexID hv = w.vertex();
|
|
|
151 |
VertexID hnv = w.next().vertex();
|
|
|
152 |
VertexID hov= w.opp().vertex();
|
|
|
153 |
VertexID honv = w.opp().next().vertex();
|
|
|
154 |
|
|
|
155 |
Vec3d v0(m.pos(hv));
|
|
|
156 |
Vec3d v1(m.pos(hnv));
|
|
|
157 |
Vec3d v2(m.pos(hov));
|
|
|
158 |
Vec3d v3(m.pos(honv));
|
|
|
159 |
|
|
|
160 |
Vec3d n1a = normalize(cross(v1-v0,v3-v0));
|
|
|
161 |
Vec3d n2a = normalize(cross(v3-v2,v1-v2));
|
|
|
162 |
|
|
|
163 |
if(dot(n1a, n2a) > thresh){
|
|
|
164 |
double before = min(min_angle(v0,v1,v2), min_angle(v0,v2,v3));
|
|
|
165 |
double after = min(min_angle(v0,v1,v3), min_angle(v1,v2,v3));
|
|
|
166 |
return -(after-before);
|
|
|
167 |
}
|
|
|
168 |
return DBL_MAX;
|
|
|
169 |
}
|
|
|
170 |
|
|
|
171 |
|
|
|
172 |
void DihedralEnergy::compute_angles(const Manifold & m, HalfEdgeID h) const
|
|
|
173 |
{
|
|
|
174 |
Walker w = m.walker(h);
|
|
|
175 |
|
|
|
176 |
VertexID hv = w.vertex();
|
|
|
177 |
VertexID hov = w.opp().vertex();
|
|
|
178 |
VertexID hnv = w.next().vertex();
|
|
|
179 |
VertexID honv = w.opp().next().vertex();
|
|
|
180 |
|
|
|
181 |
Vec3d va(m.pos(hv));
|
|
|
182 |
Vec3d vb(m.pos(hov));
|
|
|
183 |
Vec3d vc(m.pos(hnv));
|
|
|
184 |
Vec3d vd(m.pos(honv));
|
|
|
185 |
|
|
|
186 |
FaceID fa = w.next().opp().face();
|
|
|
187 |
FaceID fb = w.next().next().opp().face();
|
|
|
188 |
FaceID fc = w.opp().next().opp().face();
|
|
|
189 |
FaceID fd = w.opp().next().next().opp().face();
|
|
|
190 |
|
|
|
191 |
Vec3d n1 = normalize(cross(vc-va, vb-va));
|
|
|
192 |
Vec3d n2 = normalize(cross(vb-va, vd-va));
|
|
|
193 |
|
|
|
194 |
Vec3d na = fa == InvalidFaceID ? Vec3d(0) : Vec3d(normal(m, fa));
|
|
|
195 |
Vec3d nb = fb == InvalidFaceID ? Vec3d(0) : Vec3d(normal(m, fb));
|
|
|
196 |
Vec3d nc = fc == InvalidFaceID ? Vec3d(0) : Vec3d(normal(m, fc));
|
|
|
197 |
Vec3d nd = fd == InvalidFaceID ? Vec3d(0) : Vec3d(normal(m, fd));
|
|
|
198 |
|
|
|
199 |
|
|
|
200 |
Vec3d fn1 = normalize(cross(vb-vc, vd-vc));
|
|
|
201 |
Vec3d fn2 = normalize(cross(vd-vc, va-vc));
|
|
|
202 |
|
|
|
203 |
ab_12 = cos_ang(n1,n2);
|
|
|
204 |
ab_a1 = cos_ang(na,n1);
|
|
|
205 |
ab_b1 = cos_ang(nb,n1);
|
|
|
206 |
ab_2c = cos_ang(n2,nc);
|
|
|
207 |
ab_2d = cos_ang(n2,nd);
|
|
|
208 |
|
|
|
209 |
aa_12 = cos_ang(fn1,fn2);
|
|
|
210 |
aa_b1 = cos_ang(nb,fn1);
|
|
|
211 |
aa_c1 = cos_ang(nc, fn1);
|
|
|
212 |
aa_2a = cos_ang(fn2, na);
|
|
|
213 |
aa_2d = cos_ang(fn2,nd);
|
|
|
214 |
}
|
|
|
215 |
|
|
|
216 |
double DihedralEnergy::energy(const Manifold& m, HalfEdgeID h) const
|
|
|
217 |
{
|
|
|
218 |
Walker w = m.walker(h);
|
|
|
219 |
|
|
|
220 |
FaceID hf = w.face();
|
|
|
221 |
FaceID hof = w.opp().face();
|
|
|
222 |
|
|
|
223 |
double a = cos_ang(Vec3d(normal(m, hf)), Vec3d(normal(m, hof)));
|
|
|
224 |
|
|
|
225 |
VertexID hv = w.vertex();
|
|
|
226 |
VertexID hov = w.opp().vertex();
|
|
|
227 |
|
|
|
228 |
Vec3d va(m.pos(hv));
|
|
|
229 |
Vec3d vb(m.pos(hov));
|
|
|
230 |
|
|
|
231 |
if(use_alpha)
|
|
|
232 |
return edge_alpha_energy(va,vb,a);
|
|
|
233 |
|
|
|
234 |
return edge_c_energy(va,vb,a);
|
|
|
235 |
}
|
|
|
236 |
|
|
|
237 |
|
|
|
238 |
double DihedralEnergy::delta_energy(const Manifold& m, HalfEdgeID h) const
|
|
|
239 |
{
|
|
|
240 |
compute_angles(m, h);
|
|
|
241 |
|
|
|
242 |
Walker w = m.walker(h);
|
|
|
243 |
|
|
|
244 |
VertexID hv = w.vertex();
|
|
|
245 |
VertexID hov = w.opp().vertex();
|
|
|
246 |
VertexID hnv = w.next().vertex();
|
|
|
247 |
VertexID honv = w.opp().next().vertex();
|
|
|
248 |
|
|
|
249 |
Vec3d va(m.pos(hv));
|
|
|
250 |
Vec3d vb(m.pos(hov));
|
|
|
251 |
Vec3d vc(m.pos(hnv));
|
|
|
252 |
Vec3d vd(m.pos(honv));
|
|
|
253 |
|
|
|
254 |
if(use_alpha){
|
|
|
255 |
double before =
|
|
|
256 |
edge_alpha_energy(va,vb,ab_12)
|
|
|
257 |
+edge_alpha_energy(va,vc,ab_a1)
|
|
|
258 |
+edge_alpha_energy(vc,vb,ab_b1)
|
|
|
259 |
+edge_alpha_energy(vd,vb,ab_2c)
|
|
|
260 |
+edge_alpha_energy(vd,va,ab_2d);
|
|
|
261 |
|
|
|
262 |
double after =
|
|
|
263 |
edge_alpha_energy(vd,vc,aa_12)
|
|
|
264 |
+edge_alpha_energy(vb,vc,aa_b1)
|
|
|
265 |
+edge_alpha_energy(vd,vb,aa_c1)
|
|
|
266 |
+edge_alpha_energy(va,vc,aa_2a)
|
|
|
267 |
+edge_alpha_energy(vd,va,aa_2d);
|
|
|
268 |
|
|
|
269 |
return (after-before);
|
|
|
270 |
}
|
|
|
271 |
double before =
|
|
|
272 |
edge_c_energy(va,vb,ab_12)
|
|
|
273 |
+edge_c_energy(va,vc,ab_a1)
|
|
|
274 |
+edge_c_energy(vc,vb,ab_b1)
|
|
|
275 |
+edge_c_energy(vd,vb,ab_2c)
|
|
|
276 |
+edge_c_energy(vd,va,ab_2d);
|
|
|
277 |
|
|
|
278 |
double after =
|
|
|
279 |
edge_c_energy(vd,vc,aa_12)
|
|
|
280 |
+edge_c_energy(vb,vc,aa_b1)
|
|
|
281 |
+edge_c_energy(vd,vb,aa_c1)
|
|
|
282 |
+edge_c_energy(va,vc,aa_2a)
|
|
|
283 |
+edge_c_energy(vd,va,aa_2d);
|
|
|
284 |
|
|
|
285 |
return after-before;
|
|
|
286 |
}
|
|
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
double CurvatureEnergy::abs_mean_curv(const Vec3d& v, const vector<Vec3d>& ring) const
|
|
|
291 |
{
|
|
|
292 |
const size_t N = ring.size();
|
|
|
293 |
|
|
|
294 |
double H = 0;
|
|
|
295 |
for(size_t i = 0; i < N; ++i){
|
|
|
296 |
Vec3d vnim1 = ring[(i+N-1)%N] - v;
|
|
|
297 |
Vec3d vni = ring[i] - v;
|
|
|
298 |
Vec3d vnip1 = ring[(i+1)%N] - v;
|
|
|
299 |
|
|
|
300 |
Vec3d Nm = normalize(cross(vni, vnim1));
|
|
|
301 |
Vec3d Np = normalize(cross(vnip1, vni));
|
|
|
302 |
|
|
|
303 |
double beta = acos(max(-1.0, min(1.0, dot(Nm, Np))));
|
|
|
304 |
H += vni.length() * beta;
|
|
|
305 |
}
|
|
|
306 |
H /= 4;
|
|
|
307 |
|
|
|
308 |
return H;
|
|
|
309 |
}
|
|
|
310 |
|
|
|
311 |
double CurvatureEnergy::delta_energy(const Manifold& m, HalfEdgeID h) const
|
|
|
312 |
{
|
|
|
313 |
Walker w = m.walker(h);
|
|
|
314 |
|
|
|
315 |
VertexID va = w.vertex();
|
|
|
316 |
VertexID vb = w.opp().vertex();
|
|
|
317 |
VertexID vc = w.next().vertex();
|
|
|
318 |
VertexID vd = w.opp().next().vertex();
|
|
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
|
322 |
Vec3d va_pos(m.pos(va));
|
|
|
323 |
Vec3d vb_pos(m.pos(vb));
|
|
|
324 |
Vec3d vc_pos(m.pos(vc));
|
|
|
325 |
Vec3d vd_pos(m.pos(vd));
|
|
|
326 |
|
|
|
327 |
vector<Vec3d> va_ring_bef;
|
|
|
328 |
vector<Vec3d> va_ring_aft;
|
|
|
329 |
vector<Vec3d> vb_ring_bef;
|
|
|
330 |
vector<Vec3d> vb_ring_aft;
|
|
|
331 |
vector<Vec3d> vc_ring_bef;
|
|
|
332 |
vector<Vec3d> vc_ring_aft;
|
|
|
333 |
vector<Vec3d> vd_ring_bef;
|
|
|
334 |
vector<Vec3d> vd_ring_aft;
|
|
|
335 |
|
|
|
336 |
for(Walker wv = m.walker(va); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
337 |
VertexID v = wv.vertex();
|
|
|
338 |
Vec3d pos(m.pos(v));
|
|
|
339 |
|
|
|
340 |
va_ring_bef.push_back(pos);
|
|
|
341 |
if(v != vb)
|
|
|
342 |
va_ring_aft.push_back(pos);
|
|
|
343 |
}
|
|
|
344 |
for(Walker wv = m.walker(vb); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
345 |
VertexID v = wv.vertex();
|
|
|
346 |
Vec3d pos(m.pos(v));
|
|
|
347 |
|
|
|
348 |
vb_ring_bef.push_back(pos);
|
|
|
349 |
if(v != va)
|
|
|
350 |
vb_ring_aft.push_back(pos);
|
|
|
351 |
}
|
|
|
352 |
for(Walker wv = m.walker(vc); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
353 |
VertexID v = wv.vertex();
|
|
|
354 |
Vec3d pos(m.pos(v));
|
|
|
355 |
|
|
|
356 |
vc_ring_bef.push_back(pos);
|
|
|
357 |
vc_ring_aft.push_back(pos);
|
|
|
358 |
if(v == va)
|
|
|
359 |
vc_ring_aft.push_back(vd_pos);
|
|
|
360 |
}
|
|
|
361 |
for(Walker wv = m.walker(vd); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
362 |
VertexID v = wv.vertex();
|
|
|
363 |
Vec3d pos(m.pos(v));
|
|
|
364 |
|
|
|
365 |
vd_ring_bef.push_back(pos);
|
|
|
366 |
vd_ring_aft.push_back(pos);
|
|
|
367 |
if(v == vb)
|
|
|
368 |
vd_ring_aft.push_back(vc_pos);
|
|
|
369 |
}
|
|
|
370 |
double before =
|
|
|
371 |
abs_mean_curv(va_pos, va_ring_bef) +
|
|
|
372 |
abs_mean_curv(vb_pos, vb_ring_bef) +
|
|
|
373 |
abs_mean_curv(vc_pos, vc_ring_bef) +
|
|
|
374 |
abs_mean_curv(vd_pos, vd_ring_bef);
|
|
|
375 |
|
|
|
376 |
double after =
|
|
|
377 |
abs_mean_curv(va_pos, va_ring_aft) +
|
|
|
378 |
abs_mean_curv(vb_pos, vb_ring_aft) +
|
|
|
379 |
abs_mean_curv(vc_pos, vc_ring_aft) +
|
|
|
380 |
abs_mean_curv(vd_pos, vd_ring_aft);
|
|
|
381 |
|
|
|
382 |
return after-before;
|
|
|
383 |
}
|
|
|
384 |
|
|
|
385 |
|
|
|
386 |
class GaussCurvatureEnergy: public EnergyFun
|
|
|
387 |
{
|
|
|
388 |
|
|
|
389 |
double gauss_curv(const Vec3d& v, const vector<Vec3d>& ring) const
|
|
|
390 |
{
|
|
|
391 |
const size_t N = ring.size();
|
|
|
392 |
double asum=0.0f;
|
|
|
393 |
double area_sum=0;
|
|
|
394 |
for(size_t i = 0; i < N; ++i){
|
|
|
395 |
const Vec3d& v1 = ring[i];
|
|
|
396 |
const Vec3d& v2 = ring[(i+1)%N];
|
|
|
397 |
Vec3d a = v1-v;
|
|
|
398 |
Vec3d b = v2-v;
|
|
|
399 |
asum += acos(max(-1.0, min(1.0, dot(a,b)/(length(a)*length(b)))));
|
|
|
400 |
area_sum += 0.5 * length(cross(a,b));
|
|
|
401 |
}
|
|
|
402 |
return 3*abs(2 * M_PI - asum)/area_sum;
|
|
|
403 |
}
|
|
|
404 |
|
|
|
405 |
public:
|
|
|
406 |
double delta_energy(const Manifold& m, HalfEdgeID h) const
|
|
|
407 |
{
|
|
|
408 |
Walker w = m.walker(h);
|
|
|
409 |
|
|
|
410 |
VertexID va = w.vertex();
|
|
|
411 |
VertexID vb = w.opp().vertex();
|
|
|
412 |
VertexID vc = w.next().vertex();
|
|
|
413 |
VertexID vd = w.opp().next().vertex();
|
|
|
414 |
|
|
|
415 |
Vec3d va_pos(m.pos(va));
|
|
|
416 |
Vec3d vb_pos(m.pos(vb));
|
|
|
417 |
Vec3d vc_pos(m.pos(vc));
|
|
|
418 |
Vec3d vd_pos(m.pos(vd));
|
|
|
419 |
|
|
|
420 |
vector<Vec3d> va_ring_bef;
|
|
|
421 |
vector<Vec3d> va_ring_aft;
|
|
|
422 |
vector<Vec3d> vb_ring_bef;
|
|
|
423 |
vector<Vec3d> vb_ring_aft;
|
|
|
424 |
vector<Vec3d> vc_ring_bef;
|
|
|
425 |
vector<Vec3d> vc_ring_aft;
|
|
|
426 |
vector<Vec3d> vd_ring_bef;
|
|
|
427 |
vector<Vec3d> vd_ring_aft;
|
|
|
428 |
|
|
|
429 |
for(Walker wv = m.walker(va); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
430 |
VertexID v = wv.vertex();
|
|
|
431 |
Vec3d pos(m.pos(v));
|
|
|
432 |
|
|
|
433 |
va_ring_bef.push_back(pos);
|
|
|
434 |
if(v != vb)
|
|
|
435 |
va_ring_aft.push_back(pos);
|
|
|
436 |
}
|
|
|
437 |
for(Walker wv = m.walker(vb); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
438 |
VertexID v = wv.vertex();
|
|
|
439 |
Vec3d pos(m.pos(v));
|
|
|
440 |
|
|
|
441 |
vb_ring_bef.push_back(pos);
|
|
|
442 |
if(v != va)
|
|
|
443 |
vb_ring_aft.push_back(pos);
|
|
|
444 |
}
|
|
|
445 |
for(Walker wv = m.walker(vc); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
446 |
VertexID v = wv.vertex();
|
|
|
447 |
Vec3d pos(m.pos(v));
|
|
|
448 |
|
|
|
449 |
vc_ring_bef.push_back(pos);
|
|
|
450 |
vc_ring_aft.push_back(pos);
|
|
|
451 |
if(v == va)
|
|
|
452 |
vc_ring_aft.push_back(pos);
|
|
|
453 |
}
|
|
|
454 |
for(Walker wv = m.walker(vd); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
455 |
VertexID v = wv.vertex();
|
|
|
456 |
Vec3d pos(m.pos(v));
|
|
|
457 |
|
|
|
458 |
vd_ring_bef.push_back(pos);
|
|
|
459 |
vd_ring_aft.push_back(pos);
|
|
|
460 |
if(v == vb)
|
|
|
461 |
vd_ring_aft.push_back(pos);
|
|
|
462 |
}
|
|
|
463 |
double before =
|
|
|
464 |
gauss_curv(va_pos,va_ring_bef) +
|
|
|
465 |
gauss_curv(vb_pos,vb_ring_bef) +
|
|
|
466 |
gauss_curv(vc_pos,vc_ring_bef) +
|
|
|
467 |
gauss_curv(vd_pos,vd_ring_bef);
|
|
|
468 |
|
|
|
469 |
double after =
|
|
|
470 |
gauss_curv(va_pos,va_ring_aft) +
|
|
|
471 |
gauss_curv(vb_pos,vb_ring_aft) +
|
|
|
472 |
gauss_curv(vc_pos,vc_ring_aft) +
|
|
|
473 |
gauss_curv(vd_pos,vd_ring_aft);
|
|
|
474 |
|
|
|
475 |
return after-before;
|
|
|
476 |
}
|
|
|
477 |
};
|
|
|
478 |
|
|
|
479 |
struct PQElem
|
|
|
480 |
{
|
|
|
481 |
double pri;
|
|
|
482 |
HalfEdgeID h;
|
|
|
483 |
int time;
|
|
|
484 |
|
|
|
485 |
//PQElem() {}
|
|
|
486 |
PQElem(double _pri, HalfEdgeID _h, int _time):
|
|
|
487 |
pri(_pri), h(_h), time(_time) {}
|
|
|
488 |
};
|
|
|
489 |
|
|
|
490 |
bool operator<(const PQElem& e0, const PQElem& e1)
|
|
|
491 |
{
|
|
|
492 |
return e0.pri > e1.pri;
|
|
|
493 |
}
|
|
|
494 |
|
|
|
495 |
|
|
|
496 |
void add_to_queue(const Manifold& m, HalfEdgeAttributeVector<int>& touched, priority_queue<PQElem>& Q, HalfEdgeID h, const EnergyFun& efun)
|
|
|
497 |
{
|
|
|
498 |
if(boundary(m, h))
|
|
|
499 |
return;
|
|
|
500 |
|
|
|
501 |
Walker w = m.walker(h);
|
|
|
502 |
HalfEdgeID ho = w.opp().halfedge();
|
|
|
503 |
|
|
|
504 |
double energy = efun.delta_energy(m, h);
|
|
|
505 |
int t = touched[h] + 1;
|
|
|
506 |
touched[h] = t;
|
|
|
507 |
touched[ho] = t;
|
|
|
508 |
if((energy<0) && (t < 10000)){
|
|
|
509 |
Q.push(PQElem(energy, h, t));
|
|
|
510 |
}
|
|
|
511 |
|
|
|
512 |
}
|
|
|
513 |
|
|
|
514 |
void add_one_ring_to_queue(const Manifold& m, HalfEdgeAttributeVector<int>& touched, priority_queue<PQElem>& Q, VertexID v, const EnergyFun& efun)
|
|
|
515 |
{
|
|
|
516 |
|
|
|
517 |
for(Walker w = m.walker(v); !w.full_circle(); w = w.circulate_vertex_cw()){
|
|
|
518 |
add_to_queue(m, touched, Q, w.halfedge(), efun);
|
|
|
519 |
}
|
|
|
520 |
}
|
|
|
521 |
|
|
|
522 |
|
|
|
523 |
void priority_queue_optimization(Manifold& m, const EnergyFun& efun)
|
|
|
524 |
{
|
|
|
525 |
HalfEdgeAttributeVector<int> touched(m.allocated_halfedges(), 0);
|
|
|
526 |
priority_queue<PQElem> Q;
|
|
|
527 |
|
|
|
528 |
cout << "Building priority queue"<< endl;
|
|
|
529 |
|
|
|
530 |
for(HalfEdgeIDIterator h = m.halfedges_begin(); h != m.halfedges_end(); ++h){
|
|
|
531 |
if(!touched[*h])
|
|
|
532 |
add_to_queue(m, touched, Q, *h, efun);
|
|
|
533 |
}
|
|
|
534 |
|
|
|
535 |
cout << "Emptying priority queue of size: " << Q.size() << " ";
|
|
|
536 |
while(!Q.empty())
|
|
|
537 |
{
|
|
|
538 |
if(Q.size() % 1000 == 0)
|
|
|
539 |
cout << ".";
|
|
|
540 |
if(Q.size() % 10000 == 0)
|
|
|
541 |
cout << Q.size();
|
|
|
542 |
|
|
|
543 |
PQElem elem = Q.top();
|
|
|
544 |
Q.pop();
|
|
|
545 |
|
|
|
546 |
if(touched[elem.h] != elem.time)
|
|
|
547 |
continue;
|
|
|
548 |
if(!precond_flip_edge(m, elem.h))
|
|
|
549 |
continue;
|
|
|
550 |
|
|
|
551 |
m.flip_edge(elem.h);
|
|
|
552 |
|
|
|
553 |
Walker w = m.walker(elem.h);
|
|
|
554 |
add_one_ring_to_queue(m, touched, Q, w.vertex(), efun);
|
|
|
555 |
add_one_ring_to_queue(m, touched, Q, w.next().vertex(), efun);
|
|
|
556 |
add_one_ring_to_queue(m, touched, Q, w.opp().vertex(), efun);
|
|
|
557 |
add_one_ring_to_queue(m, touched, Q, w.opp().next().vertex(), efun);
|
|
|
558 |
|
|
|
559 |
}
|
|
|
560 |
cout << endl;
|
|
|
561 |
}
|
|
|
562 |
|
|
|
563 |
void simulated_annealing_optimization(Manifold& m, const EnergyFun& efun, int max_iter)
|
|
|
564 |
{
|
|
|
565 |
gel_srand(0);
|
|
|
566 |
int swaps;
|
|
|
567 |
int iter = 0;
|
|
|
568 |
double T = 1;
|
|
|
569 |
|
|
|
570 |
double tmin=0;
|
|
|
571 |
{
|
|
|
572 |
for(HalfEdgeIDIterator h = m.halfedges_begin(); h != m.halfedges_end(); ++h){
|
|
|
573 |
if(boundary(m, *h))
|
|
|
574 |
continue;
|
|
|
575 |
double e = efun.delta_energy(m, *h);
|
|
|
576 |
tmin = std::min(e, tmin);
|
|
|
577 |
}
|
|
|
578 |
}
|
|
|
579 |
if (tmin < 0.0)
|
|
|
580 |
T = -2*tmin;
|
|
|
581 |
|
|
|
582 |
if(max_iter>0){
|
|
|
583 |
do{
|
|
|
584 |
cout << "Temperature : " << T << endl;
|
|
|
585 |
vector<HalfEdgeID> halfedges;
|
|
|
586 |
for(HalfEdgeIDIterator h = m.halfedges_begin(); h != m.halfedges_end(); ++h){
|
|
|
587 |
if(boundary(m, *h))
|
|
|
588 |
continue;
|
|
|
589 |
halfedges.push_back(*h);
|
|
|
590 |
}
|
|
|
591 |
random_shuffle(halfedges.begin(), halfedges.end());
|
|
|
592 |
swaps = 0;
|
|
|
593 |
for(size_t i = 0; i < halfedges.size(); ++i){
|
|
|
594 |
HalfEdgeID h = halfedges[i];
|
|
|
595 |
DihedralEnergy dih_en;
|
|
|
596 |
double dma = dih_en.min_angle(m, h);
|
|
|
597 |
if(dma > -0.4){
|
|
|
598 |
double delta = efun.delta_energy(m, h);
|
|
|
599 |
if(delta < -1e-8){
|
|
|
600 |
if(precond_flip_edge(m, h)){
|
|
|
601 |
m.flip_edge(h);
|
|
|
602 |
++swaps;
|
|
|
603 |
}
|
|
|
604 |
}
|
|
|
605 |
else{
|
|
|
606 |
delta = max(1e-8, delta);
|
|
|
607 |
double prob = min(0.9999, exp(-delta/T));
|
|
|
608 |
if(gel_rand()/double(GEL_RAND_MAX) < prob){
|
|
|
609 |
if(precond_flip_edge(m, h)){
|
|
|
610 |
m.flip_edge(h);
|
|
|
611 |
++swaps;
|
|
|
612 |
}
|
|
|
613 |
}
|
|
|
614 |
}
|
|
|
615 |
}
|
|
|
616 |
}
|
|
|
617 |
cout << "Swaps = " << swaps << " T = " << T << endl;
|
|
|
618 |
if(iter % 5 == 0 && iter > 0)
|
|
|
619 |
T *= 0.9;
|
|
|
620 |
}
|
|
|
621 |
while(++iter < max_iter && swaps);
|
|
|
622 |
}
|
|
|
623 |
cout << "Iterations " << iter << endl;
|
|
|
624 |
|
|
|
625 |
}
|
|
|
626 |
|
|
|
627 |
|
|
|
628 |
void minimize_dihedral_angle(Manifold& m,
|
|
|
629 |
int iter,
|
|
|
630 |
bool anneal,
|
|
|
631 |
bool alpha,
|
|
|
632 |
double gamma)
|
|
|
633 |
{
|
|
|
634 |
DihedralEnergy energy_fun(gamma, alpha);
|
|
|
635 |
if(anneal)
|
|
|
636 |
simulated_annealing_optimization(m, energy_fun, iter);
|
|
|
637 |
else
|
|
|
638 |
priority_queue_optimization(m, energy_fun);
|
|
|
639 |
}
|
|
|
640 |
|
|
|
641 |
void randomize_mesh(Manifold& m, int max_iter)
|
|
|
642 |
{
|
|
|
643 |
RandomEnergy energy_fun;
|
|
|
644 |
simulated_annealing_optimization(m, energy_fun, max_iter);
|
|
|
645 |
}
|
|
|
646 |
|
|
|
647 |
void minimize_curvature(Manifold& m, bool anneal)
|
|
|
648 |
{
|
|
|
649 |
CurvatureEnergy energy_fun;
|
|
|
650 |
if(anneal)
|
|
|
651 |
simulated_annealing_optimization(m, energy_fun);
|
|
|
652 |
else
|
|
|
653 |
priority_queue_optimization(m, energy_fun);
|
|
|
654 |
}
|
|
|
655 |
|
|
|
656 |
void minimize_gauss_curvature(Manifold& m, bool anneal)
|
|
|
657 |
{
|
|
|
658 |
GaussCurvatureEnergy energy_fun;
|
|
|
659 |
if(anneal)
|
|
|
660 |
simulated_annealing_optimization(m, energy_fun);
|
|
|
661 |
else
|
|
|
662 |
priority_queue_optimization(m, energy_fun);
|
|
|
663 |
}
|
|
|
664 |
|
|
|
665 |
void maximize_min_angle(Manifold& m, float thresh, bool anneal)
|
|
|
666 |
{
|
|
|
667 |
MinAngleEnergy energy_fun(thresh);
|
|
|
668 |
if(anneal)
|
|
|
669 |
simulated_annealing_optimization(m, energy_fun);
|
|
|
670 |
else
|
|
|
671 |
priority_queue_optimization(m, energy_fun);
|
|
|
672 |
}
|
|
|
673 |
|
|
|
674 |
void optimize_valency(Manifold& m, bool anneal)
|
|
|
675 |
{
|
|
|
676 |
ValencyEnergy energy_fun;
|
|
|
677 |
if(anneal)
|
|
|
678 |
simulated_annealing_optimization(m, energy_fun);
|
|
|
679 |
else
|
|
|
680 |
priority_queue_optimization(m, energy_fun);
|
|
|
681 |
}
|
|
|
682 |
|
|
|
683 |
|
|
|
684 |
void edge_equalize(Manifold& m, const Implicit& imp, int max_iter)
|
|
|
685 |
{
|
|
|
686 |
|
|
|
687 |
for(int iter=0;iter<max_iter;++iter)
|
|
|
688 |
{
|
|
|
689 |
float avg_edge_len=0;
|
|
|
690 |
for(HalfEdgeIDIterator h = m.halfedges_begin(); h != m.halfedges_end();++h)
|
|
|
691 |
avg_edge_len += length(m, *h);
|
|
|
692 |
avg_edge_len /= m.no_halfedges();
|
|
|
693 |
|
|
|
694 |
TAL_smoothing(m,1,1);
|
|
|
695 |
for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
|
|
|
696 |
imp.push_to_surface(m.pos(*vid),0,avg_edge_len*0.5);
|
|
|
697 |
|
|
|
698 |
vector<float> edge_lengths;
|
|
|
699 |
int n=0;
|
|
|
700 |
for(HalfEdgeIDIterator h = m.halfedges_begin(); h != m.halfedges_end();++h,++n)
|
|
|
701 |
edge_lengths.push_back(length(m, *h));
|
|
|
702 |
sort(edge_lengths.begin(), edge_lengths.end());
|
|
|
703 |
float med_len = edge_lengths[n/2];
|
|
|
704 |
|
|
|
705 |
vector<HalfEdgeID> short_edges, long_edges;
|
|
|
706 |
for(HalfEdgeIDIterator h = m.halfedges_begin(); h != m.halfedges_end();++h)
|
|
|
707 |
if(*h<m.walker(*h).opp().halfedge())
|
|
|
708 |
{
|
|
|
709 |
float l = length(m,*h);
|
|
|
710 |
if(l> (4/3.0) * med_len)
|
|
|
711 |
long_edges.push_back(*h);
|
|
|
712 |
else if(l< (4/5.0) * med_len)
|
|
|
713 |
short_edges.push_back(*h);
|
|
|
714 |
}
|
|
|
715 |
for(int i=0;i<long_edges.size(); ++i)
|
|
|
716 |
if(m.in_use(long_edges[i]))
|
|
|
717 |
m.split_edge(long_edges[i]);
|
|
|
718 |
shortest_edge_triangulate(m);
|
|
|
719 |
|
|
|
720 |
for(int i=0;i<short_edges.size(); ++i)
|
|
|
721 |
if(m.in_use(short_edges[i]) && precond_collapse_edge(m, short_edges[i]))
|
|
|
722 |
{
|
|
|
723 |
Walker w = m.walker(short_edges[i]);
|
|
|
724 |
Vec3d mid_point = 0.5*(m.pos(w.vertex())+m.pos(w.opp().vertex()));
|
|
|
725 |
bool illegal = false;
|
|
|
726 |
for(Walker wc=m.walker(w.vertex()); !wc.full_circle(); wc = wc.circulate_vertex_ccw())
|
|
|
727 |
if(length(m.pos(wc.vertex())-mid_point) > (4/3.0)* med_len)
|
|
|
728 |
illegal = true;
|
|
|
729 |
for(Walker wc=m.walker(w.opp().vertex()); !wc.full_circle(); wc = wc.circulate_vertex_ccw())
|
|
|
730 |
if(length(m.pos(wc.vertex())-mid_point) > (4/3.0)* med_len)
|
|
|
731 |
illegal = true;
|
|
|
732 |
|
|
|
733 |
if(!illegal)
|
|
|
734 |
{
|
|
|
735 |
if(boundary(m,w.vertex()) && !boundary(m,w.opp().vertex()))
|
|
|
736 |
m.collapse_edge(short_edges[i],false);
|
|
|
737 |
else if(!boundary(m,w.vertex()) && boundary(m,w.opp().vertex()));
|
|
|
738 |
else
|
|
|
739 |
m.collapse_edge(short_edges[i],true);
|
|
|
740 |
}
|
|
|
741 |
}
|
|
|
742 |
// TAL_smoothing(m,.95,5);
|
|
|
743 |
// for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
|
|
|
744 |
// imp.push_to_surface(m.pos(*vid));
|
|
|
745 |
|
|
|
746 |
maximize_min_angle(m, 0.9);
|
|
|
747 |
}
|
|
|
748 |
m.cleanup();
|
|
|
749 |
|
|
|
750 |
}
|
|
|
751 |
}
|