667 |
khor |
1 |
/* ----------------------------------------------------------------------- *
|
|
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
|
|
3 |
* Copyright (C) the authors and DTU Informatics
|
|
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
|
|
5 |
* ----------------------------------------------------------------------- */
|
|
|
6 |
|
|
|
7 |
#include <thread>
|
|
|
8 |
#include "smooth.h"
|
|
|
9 |
|
|
|
10 |
#include <future>
|
|
|
11 |
#include <vector>
|
|
|
12 |
#include <algorithm>
|
|
|
13 |
#include "../CGLA/Mat3x3d.h"
|
|
|
14 |
#include "../CGLA/Vec3d.h"
|
|
|
15 |
#include "../CGLA/Quatd.h"
|
|
|
16 |
#include "../Util/Timer.h"
|
|
|
17 |
|
|
|
18 |
#include "Manifold.h"
|
|
|
19 |
#include "AttributeVector.h"
|
|
|
20 |
|
|
|
21 |
namespace HMesh
|
|
|
22 |
{
|
|
|
23 |
using namespace std;
|
|
|
24 |
using namespace CGLA;
|
|
|
25 |
|
|
|
26 |
|
|
|
27 |
class range {
|
|
|
28 |
public:
|
|
|
29 |
class iterator {
|
|
|
30 |
friend class range;
|
|
|
31 |
public:
|
|
|
32 |
long int operator *() const { return i_; }
|
|
|
33 |
const iterator &operator ++() { ++i_; return *this; }
|
|
|
34 |
iterator operator ++(int) { iterator copy(*this); ++i_; return copy; }
|
|
|
35 |
|
|
|
36 |
bool operator ==(const iterator &other) const { return i_ == other.i_; }
|
|
|
37 |
bool operator !=(const iterator &other) const { return i_ != other.i_; }
|
|
|
38 |
|
|
|
39 |
protected:
|
|
|
40 |
iterator(long int start) : i_ (start) { }
|
|
|
41 |
|
|
|
42 |
private:
|
|
|
43 |
unsigned long i_;
|
|
|
44 |
};
|
|
|
45 |
|
|
|
46 |
iterator begin() const { return begin_; }
|
|
|
47 |
iterator end() const { return end_; }
|
|
|
48 |
range(long int begin, long int end) : begin_(begin), end_(end) {}
|
|
|
49 |
private:
|
|
|
50 |
iterator begin_;
|
|
|
51 |
iterator end_;
|
|
|
52 |
};
|
|
|
53 |
|
|
|
54 |
typedef std::vector<std::vector<VertexID>> VertexIDBatches;
|
|
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
|
58 |
void for_each_vertex(Manifold& m, function<void(VertexID)> f) { for(auto v : m.vertices()) f(v); }
|
|
|
59 |
void for_each_face(Manifold& m, function<void(FaceID)> f) { for(auto p : m.faces()) f(p); }
|
|
|
60 |
void for_each_halfedge(Manifold& m, function<void(HalfEdgeID)> f) { for(auto h : m.halfedges()) f(h); }
|
|
|
61 |
|
|
|
62 |
|
|
|
63 |
inline Vec3d laplacian(const Manifold& m, VertexID v)
|
|
|
64 |
{
|
|
|
65 |
Vec3d p(0);
|
|
|
66 |
int n = circulate_vertex_ccw(m, v, (std::function<void(VertexID)>)[&](VertexID v){ p += m.pos(v); });
|
|
|
67 |
return p / n - m.pos(v);
|
|
|
68 |
}
|
|
|
69 |
|
|
|
70 |
|
|
|
71 |
int CORES = 8;
|
|
|
72 |
|
|
|
73 |
void laplacian_smooth_example(Manifold& m)
|
|
|
74 |
{
|
|
|
75 |
VertexAttributeVector<Vec3d> new_pos = m.positions_attribute_vector();
|
|
|
76 |
for(VertexID v : m.vertices())
|
|
|
77 |
if(!boundary(m, v))
|
|
|
78 |
{
|
|
|
79 |
Vec3d L(0);
|
|
|
80 |
int n = circulate_vertex_ccw(m, v, (std::function<void(VertexID)>)[&](VertexID v){ L += m.pos(v); });
|
|
|
81 |
new_pos[v] = L/n;
|
|
|
82 |
}
|
|
|
83 |
m.positions_attribute_vector() = new_pos;
|
|
|
84 |
|
|
|
85 |
}
|
|
|
86 |
|
|
|
87 |
void laplacian_smooth0(Manifold& m,float weight, int max_iter)
|
|
|
88 |
{
|
|
|
89 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
90 |
VertexAttributeVector<Vec3d> L_attr(m.no_vertices());
|
|
|
91 |
|
|
|
92 |
for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v)
|
|
|
93 |
if(!boundary(m, *v))
|
|
|
94 |
L_attr[*v] =laplacian(m, *v);
|
|
|
95 |
for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
|
|
|
96 |
if(!boundary(m, *v))
|
|
|
97 |
m.pos(*v) += weight*L_attr[*v];
|
|
|
98 |
}
|
|
|
99 |
}
|
|
|
100 |
}
|
|
|
101 |
|
|
|
102 |
void laplacian_smooth1(Manifold& m,float weight, int max_iter)
|
|
|
103 |
{
|
|
|
104 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
105 |
VertexAttributeVector<Vec3d> L_attr(m.no_vertices());
|
|
|
106 |
|
|
|
107 |
for(VertexID v : m.vertices())
|
|
|
108 |
if(!boundary(m, v))
|
|
|
109 |
L_attr[v] =laplacian(m, v);
|
|
|
110 |
for(VertexID v : m.vertices()){
|
|
|
111 |
if(!boundary(m, v))
|
|
|
112 |
m.pos(v) += weight*L_attr[v];
|
|
|
113 |
}
|
|
|
114 |
}
|
|
|
115 |
}
|
|
|
116 |
|
|
|
117 |
void laplacian_smooth2(Manifold& m,float weight, int max_iter)
|
|
|
118 |
{
|
|
|
119 |
auto new_pos = m.positions_attribute_vector();
|
|
|
120 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
121 |
for(auto v : m.vertices())
|
|
|
122 |
if(!boundary(m, v))
|
|
|
123 |
new_pos[v] = weight*laplacian(m, v)+m.pos(v);
|
|
|
124 |
m.positions_attribute_vector() = new_pos;
|
|
|
125 |
}
|
|
|
126 |
}
|
|
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
void laplacian_smooth3(Manifold& m, float weight, int max_iter)
|
|
|
131 |
{
|
|
|
132 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
133 |
auto new_pos = m.positions_attribute_vector();
|
|
|
134 |
for(auto v : m.vertices())
|
|
|
135 |
if(!boundary(m, v))
|
|
|
136 |
new_pos[v] = weight*laplacian(m, v)+m.pos(v);
|
|
|
137 |
m.positions_attribute_vector() = move(new_pos);
|
|
|
138 |
}
|
|
|
139 |
}
|
|
|
140 |
|
|
|
141 |
void laplacian_smooth4(Manifold& m,float weight, int max_iter)
|
|
|
142 |
{
|
|
|
143 |
auto new_pos = m.positions_attribute_vector();
|
|
|
144 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
145 |
for(VertexID v : m.vertices())
|
|
|
146 |
if(!boundary(m, v))
|
|
|
147 |
new_pos[v] = weight*laplacian(m, v)+m.pos(v);
|
|
|
148 |
swap(m.positions_attribute_vector(),new_pos);
|
|
|
149 |
}
|
|
|
150 |
}
|
|
|
151 |
|
|
|
152 |
void laplacian_smooth4_5(Manifold& m,float weight, int max_iter)
|
|
|
153 |
{
|
|
|
154 |
auto new_pos = m.positions_attribute_vector();
|
|
|
155 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
156 |
for_each_vertex(m, [&](VertexID v) {new_pos[v] = weight*laplacian(m, v)+m.pos(v);});
|
|
|
157 |
swap(m.positions_attribute_vector(),new_pos);
|
|
|
158 |
}
|
|
|
159 |
}
|
|
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
|
163 |
void laplacian_smooth5(Manifold& m, float weight, int max_iter)
|
|
|
164 |
{
|
|
|
165 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
166 |
auto new_pos = m.positions_attribute_vector();
|
|
|
167 |
vector<thread> t_vec;
|
|
|
168 |
for(auto v : m.vertices())
|
|
|
169 |
if(!boundary(m, v))
|
|
|
170 |
t_vec.push_back(thread([&](VertexID vid){
|
|
|
171 |
if(!boundary(m, vid))
|
|
|
172 |
new_pos[vid] = weight*laplacian(m, vid)+ m.pos(vid);},v));
|
|
|
173 |
for(int i=0;i<t_vec.size();++i)
|
|
|
174 |
t_vec[i].join();
|
|
|
175 |
m.positions_attribute_vector() = move(new_pos);
|
|
|
176 |
}
|
|
|
177 |
}
|
|
|
178 |
|
|
|
179 |
|
|
|
180 |
|
|
|
181 |
inline void laplacian_smooth_vertex(Manifold& m, const vector<VertexID>& vids,
|
|
|
182 |
VertexAttributeVector<Vec3d>& new_pos,
|
|
|
183 |
float weight){
|
|
|
184 |
for(VertexID v: vids)
|
|
|
185 |
new_pos[v] = m.pos(v)+weight*laplacian(m, v);
|
|
|
186 |
}
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
void laplacian_smooth6(Manifold& m, float weight, int max_iter)
|
|
|
190 |
{
|
|
|
191 |
vector<vector<VertexID>> vertex_ids(CORES);
|
|
|
192 |
auto batch_size = m.no_vertices()/CORES;
|
|
|
193 |
int cnt = 0;
|
|
|
194 |
for_each_vertex(m, [&](VertexID v) {
|
|
|
195 |
if (!boundary(m, v))
|
|
|
196 |
vertex_ids[(cnt++/batch_size)%CORES].push_back(v);
|
|
|
197 |
});
|
|
|
198 |
vector<thread> t_vec(CORES);
|
|
|
199 |
VertexAttributeVector<Vec3d> new_pos = m.positions_attribute_vector();
|
|
|
200 |
for(int iter=0;iter<max_iter; ++iter) {
|
|
|
201 |
for(int thread_no=0;thread_no<CORES;++thread_no)
|
|
|
202 |
t_vec[thread_no] = thread(laplacian_smooth_vertex,
|
|
|
203 |
ref(m), ref(vertex_ids[thread_no]),
|
|
|
204 |
ref(new_pos), weight);
|
|
|
205 |
for(int thread_no=0;thread_no<CORES;++thread_no)
|
|
|
206 |
t_vec[thread_no].join();
|
|
|
207 |
swap(m.positions_attribute_vector(), new_pos);
|
|
|
208 |
}
|
|
|
209 |
|
|
|
210 |
}
|
|
|
211 |
|
|
|
212 |
|
|
|
213 |
// template<typename T>
|
|
|
214 |
// void for_each_vertex_parallel(int no_threads, const VertexIDBatches& batches, const T& f) {
|
|
|
215 |
// vector<future<void>> f_vec(no_threads);
|
|
|
216 |
// for(auto t : range(0, no_threads))
|
|
|
217 |
// f_vec[t] = async(launch::async, f, ref(batches[t]));
|
|
|
218 |
// }
|
|
|
219 |
template<typename T>
|
|
|
220 |
void for_each_vertex_parallel(int no_threads, const VertexIDBatches& batches, const T& f) {
|
|
|
221 |
vector<thread> t_vec(no_threads);
|
|
|
222 |
for(auto t : range(0, no_threads))
|
|
|
223 |
t_vec[t] = thread(f, ref(batches[t]));
|
|
|
224 |
for(auto t : range(0, no_threads))
|
|
|
225 |
t_vec[t].join();
|
|
|
226 |
}
|
|
|
227 |
|
|
|
228 |
VertexIDBatches batch_vertices(Manifold& m) {
|
|
|
229 |
VertexIDBatches vertex_ids(CORES);
|
|
|
230 |
auto batch_size = m.no_vertices()/CORES;
|
|
|
231 |
int cnt = 0;
|
|
|
232 |
for_each_vertex(m, [&](VertexID v) {
|
|
|
233 |
//if (!boundary(m, v))
|
|
|
234 |
vertex_ids[(cnt++/batch_size)%CORES].push_back(v);
|
|
|
235 |
});
|
|
|
236 |
return vertex_ids;
|
|
|
237 |
}
|
|
|
238 |
|
|
|
239 |
void laplacian_smooth7(Manifold& m, float weight, int max_iter)
|
|
|
240 |
{
|
|
|
241 |
auto vertex_ids = batch_vertices(m);
|
|
|
242 |
auto new_pos = m.positions_attribute_vector();
|
|
|
243 |
auto f = [&](const vector<VertexID>& vids) {
|
|
|
244 |
for(VertexID v: vids)
|
|
|
245 |
new_pos[v] = m.pos(v)+weight*laplacian(m, v);
|
|
|
246 |
};
|
|
|
247 |
|
|
|
248 |
for(auto _ : range(0, max_iter)) {
|
|
|
249 |
for_each_vertex_parallel(CORES, vertex_ids, f);
|
|
|
250 |
swap(m.positions_attribute_vector(), new_pos);
|
|
|
251 |
}
|
|
|
252 |
}
|
|
|
253 |
|
|
|
254 |
|
|
|
255 |
|
|
|
256 |
|
|
|
257 |
void laplacian_smooth(Manifold& m,float weight, int max_iter)
|
|
|
258 |
{
|
|
|
259 |
// laplacian_smooth_example(m);
|
|
|
260 |
laplacian_smooth7(m,weight,max_iter);
|
|
|
261 |
|
|
|
262 |
// Util::Timer tim;
|
|
|
263 |
// cout << "Method 0: ";
|
|
|
264 |
// for(int i=0;i<5;++i) {
|
|
|
265 |
// Manifold m2 = m;
|
|
|
266 |
// tim.start();
|
|
|
267 |
// laplacian_smooth0(m2, 1, 1000);
|
|
|
268 |
// cout << tim.get_secs() << ", ";
|
|
|
269 |
// }
|
|
|
270 |
// cout << endl;
|
|
|
271 |
//
|
|
|
272 |
// cout << "Method 1: ";
|
|
|
273 |
// for(int i=0;i<5;++i) {
|
|
|
274 |
// Manifold m2 = m;
|
|
|
275 |
// tim.start();
|
|
|
276 |
// laplacian_smooth1(m2, 1, 1000);
|
|
|
277 |
// cout << tim.get_secs() << ", ";
|
|
|
278 |
// }
|
|
|
279 |
// cout << endl;
|
|
|
280 |
//
|
|
|
281 |
// cout << "Method 2: ";
|
|
|
282 |
// for(int i=0;i<5;++i) {
|
|
|
283 |
// Manifold m2 = m;
|
|
|
284 |
// tim.start();
|
|
|
285 |
// laplacian_smooth2(m2, 1, 1000);
|
|
|
286 |
// cout << tim.get_secs() << ", ";
|
|
|
287 |
// }
|
|
|
288 |
// cout << endl;
|
|
|
289 |
//
|
|
|
290 |
// cout << "Method 3: ";
|
|
|
291 |
// for(int i=0;i<5;++i) {
|
|
|
292 |
// Manifold m2 = m;
|
|
|
293 |
// tim.start();
|
|
|
294 |
// laplacian_smooth3(m2, 1, 1000);
|
|
|
295 |
// cout << tim.get_secs() << ", ";
|
|
|
296 |
// }
|
|
|
297 |
// cout << endl;
|
|
|
298 |
//
|
|
|
299 |
// cout << "Method 4: ";
|
|
|
300 |
// for(int i=0;i<5;++i) {
|
|
|
301 |
// Manifold m2 = m;
|
|
|
302 |
// tim.start();
|
|
|
303 |
// laplacian_smooth4(m2, 1, 1000);
|
|
|
304 |
// cout << tim.get_secs() << ", ";
|
|
|
305 |
// }
|
|
|
306 |
// cout << endl;
|
|
|
307 |
//
|
|
|
308 |
// cout << "Method 5: ";
|
|
|
309 |
// for(int i=0;i<3;++i) {
|
|
|
310 |
// Manifold m2 = m;
|
|
|
311 |
// tim.start();
|
|
|
312 |
// laplacian_smooth5(m2, 1, 1000);
|
|
|
313 |
// cout << " sec: "<< tim.get_secs() << ",";
|
|
|
314 |
// }
|
|
|
315 |
// cout << endl;
|
|
|
316 |
//
|
|
|
317 |
// CORES = 2;
|
|
|
318 |
// cout << "Method 6 (2): ";
|
|
|
319 |
// for(int i=0;i<5;++i) {
|
|
|
320 |
// Manifold m2 = m;
|
|
|
321 |
// tim.start();
|
|
|
322 |
// laplacian_smooth6(m2, 1, 1000);
|
|
|
323 |
// cout << tim.get_secs() << ", ";
|
|
|
324 |
// }
|
|
|
325 |
// cout << endl;
|
|
|
326 |
//
|
|
|
327 |
// CORES = 4;
|
|
|
328 |
// cout << "Method 7 (4): ";
|
|
|
329 |
// for(int i=0;i<5;++i) {
|
|
|
330 |
// Manifold m2 = m;
|
|
|
331 |
// tim.start();
|
|
|
332 |
// laplacian_smooth6(m2, 1, 1000);
|
|
|
333 |
// cout << tim.get_secs() << ", ";
|
|
|
334 |
// }
|
|
|
335 |
// cout << endl;
|
|
|
336 |
//
|
|
|
337 |
// CORES = 8;
|
|
|
338 |
// cout << "Method 7 (8): ";
|
|
|
339 |
// for(int i=0;i<5;++i) {
|
|
|
340 |
// Manifold m2 = m;
|
|
|
341 |
// tim.start();
|
|
|
342 |
// laplacian_smooth6(m2, 1, 1000);
|
|
|
343 |
// cout << tim.get_secs() << ", ";
|
|
|
344 |
// }
|
|
|
345 |
// cout << endl;
|
|
|
346 |
|
|
|
347 |
|
|
|
348 |
}
|
|
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
|
353 |
|
|
|
354 |
void taubin_smooth(Manifold& m, int max_iter)
|
|
|
355 |
{
|
|
|
356 |
auto new_pos = m.positions_attribute_vector();
|
|
|
357 |
for(int iter = 0; iter < 2*max_iter; ++iter) {
|
|
|
358 |
for(VertexID v : m.vertices())
|
|
|
359 |
if(!boundary(m, v))
|
|
|
360 |
new_pos[v] = (iter%2 == 0 ? 0.5 : -0.52) * laplacian(m, v) + m.pos(v);
|
|
|
361 |
swap(m.positions_attribute_vector(), new_pos);
|
|
|
362 |
}
|
|
|
363 |
}
|
|
|
364 |
|
|
|
365 |
void face_neighbourhood(Manifold& m, FaceID f, vector<FaceID>& nbrs)
|
|
|
366 |
{
|
|
|
367 |
FaceAttributeVector<int> touched(m.allocated_faces(), -1);
|
|
|
368 |
touched[f] = 1;
|
|
|
369 |
nbrs.push_back(f);
|
|
|
370 |
for(Walker wf = m.walker(f); !wf.full_circle(); wf = wf.circulate_face_cw()){
|
|
|
371 |
for(Walker wv = m.walker(wf.vertex()); !wv.full_circle(); wv = wv.circulate_vertex_cw()){
|
|
|
372 |
FaceID fn = wv.face();
|
|
|
373 |
if(fn != InvalidFaceID && touched[fn] != touched[f]){
|
|
|
374 |
nbrs.push_back(fn);
|
|
|
375 |
touched[fn] = 1;
|
|
|
376 |
}
|
|
|
377 |
}
|
|
|
378 |
}
|
|
|
379 |
}
|
|
|
380 |
|
|
|
381 |
|
|
|
382 |
|
|
|
383 |
Vec3d fvm_filtered_normal(Manifold& m, FaceID f)
|
|
|
384 |
{
|
|
|
385 |
const float sigma = .1f;
|
|
|
386 |
|
|
|
387 |
vector<FaceID> nbrs;
|
|
|
388 |
face_neighbourhood(m, f, nbrs);
|
|
|
389 |
float min_dist_sum=1e32f;
|
|
|
390 |
long int median=-1;
|
|
|
391 |
|
|
|
392 |
vector<Vec3d> normals(nbrs.size());
|
|
|
393 |
for(size_t i=0;i<nbrs.size();++i)
|
|
|
394 |
{
|
|
|
395 |
normals[i] = normal(m, nbrs[i]);
|
|
|
396 |
float dist_sum = 0;
|
|
|
397 |
for(size_t j=0;j<nbrs.size(); ++j)
|
|
|
398 |
dist_sum += 1.0f - dot(normals[i], normals[j]);
|
|
|
399 |
if(dist_sum < min_dist_sum)
|
|
|
400 |
{
|
|
|
401 |
min_dist_sum = dist_sum;
|
|
|
402 |
median = i;
|
|
|
403 |
}
|
|
|
404 |
}
|
|
|
405 |
assert(median != -1);
|
|
|
406 |
Vec3d median_norm = normals[median];
|
|
|
407 |
Vec3d avg_norm(0);
|
|
|
408 |
for(size_t i=0;i<nbrs.size();++i)
|
|
|
409 |
{
|
|
|
410 |
float w = exp((dot(median_norm, normals[i])-1)/sigma);
|
|
|
411 |
if(w<1e-2) w = 0;
|
|
|
412 |
avg_norm += w*normals[i];
|
|
|
413 |
}
|
|
|
414 |
return normalize(avg_norm);
|
|
|
415 |
}
|
|
|
416 |
Vec3d bilateral_filtered_normal(Manifold& m, FaceID f, double avg_len)
|
|
|
417 |
{
|
|
|
418 |
vector<FaceID> nbrs;
|
|
|
419 |
face_neighbourhood(m, f, nbrs);
|
|
|
420 |
Vec3d p0 = centre(m, f);
|
|
|
421 |
Vec3d n0 = normal(m, f);
|
|
|
422 |
vector<Vec3d> normals(nbrs.size());
|
|
|
423 |
vector<Vec3d> pos(nbrs.size());
|
|
|
424 |
Vec3d fn(0);
|
|
|
425 |
for(FaceID nbr : nbrs)
|
|
|
426 |
{
|
|
|
427 |
Vec3d n = normal(m, nbr);
|
|
|
428 |
Vec3d p = centre(m, nbr);
|
|
|
429 |
double w_a = exp(-acos(max(-1.0,min(1.0,dot(n,n0))))/(M_PI/32.0));
|
|
|
430 |
double w_s = exp(-length(p-p0)/avg_len);
|
|
|
431 |
|
|
|
432 |
fn += area(m, nbr)* w_a * w_s * n;
|
|
|
433 |
|
|
|
434 |
}
|
|
|
435 |
return normalize(fn);
|
|
|
436 |
}
|
|
|
437 |
|
|
|
438 |
void anisotropic_smooth(HMesh::Manifold& m, int max_iter, NormalSmoothMethod nsm)
|
|
|
439 |
{
|
|
|
440 |
double avg_len=0;
|
|
|
441 |
for(HalfEdgeID hid : m.halfedges())
|
|
|
442 |
avg_len += length(m, hid);
|
|
|
443 |
avg_len /= 2.0;
|
|
|
444 |
for(int iter = 0;iter<max_iter; ++iter)
|
|
|
445 |
{
|
|
|
446 |
|
|
|
447 |
FaceAttributeVector<Vec3d> filtered_norms(m.allocated_faces());
|
|
|
448 |
|
|
|
449 |
for(FaceID f: m.faces()){
|
|
|
450 |
filtered_norms[f] = (nsm == BILATERAL_NORMAL_SMOOTH)?
|
|
|
451 |
bilateral_filtered_normal(m, f, avg_len):
|
|
|
452 |
fvm_filtered_normal(m, f);
|
|
|
453 |
}
|
|
|
454 |
|
|
|
455 |
VertexAttributeVector<Vec3d> vertex_positions(m.allocated_vertices(), Vec3d(0));
|
|
|
456 |
VertexAttributeVector<int> count(m.allocated_vertices(), 0);
|
|
|
457 |
for(int sub_iter=0;sub_iter<100;++sub_iter)
|
|
|
458 |
{
|
|
|
459 |
for(HalfEdgeID hid : m.halfedges())
|
|
|
460 |
{
|
|
|
461 |
Walker w = m.walker(hid);
|
|
|
462 |
FaceID f = w.face();
|
|
|
463 |
|
|
|
464 |
if(f != InvalidFaceID){
|
|
|
465 |
VertexID v = w.vertex();
|
|
|
466 |
Vec3d dir = m.pos(w.opp().vertex()) - m.pos(v);
|
|
|
467 |
Vec3d n = filtered_norms[f];
|
|
|
468 |
vertex_positions[v] += m.pos(v) + 0.5 * n * dot(n, dir);
|
|
|
469 |
count[v] += 1;
|
|
|
470 |
}
|
|
|
471 |
|
|
|
472 |
}
|
|
|
473 |
double max_move= 0;
|
|
|
474 |
for(VertexID v : m.vertices())
|
|
|
475 |
{
|
|
|
476 |
Vec3d npos = vertex_positions[v] / double(count[v]);
|
|
|
477 |
double move = sqr_length(npos - m.pos(v));
|
|
|
478 |
if(move > max_move)
|
|
|
479 |
max_move = move;
|
|
|
480 |
|
|
|
481 |
m.pos(v) = npos;
|
|
|
482 |
}
|
|
|
483 |
if(max_move<sqr(1e-8*avg_len))
|
|
|
484 |
{
|
|
|
485 |
cout << "iters " << sub_iter << endl;
|
|
|
486 |
break;
|
|
|
487 |
}
|
|
|
488 |
}
|
|
|
489 |
}
|
|
|
490 |
}
|
|
|
491 |
|
|
|
492 |
void TAL_smoothing(Manifold& m, float w, int max_iter)
|
|
|
493 |
{
|
|
|
494 |
for(int iter=0;iter<max_iter;++iter) {
|
|
|
495 |
VertexAttributeVector<float> vertex_areas;
|
|
|
496 |
VertexAttributeVector<Vec3d> laplacians;
|
|
|
497 |
|
|
|
498 |
for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
|
|
|
499 |
{
|
|
|
500 |
vertex_areas[*vid] = 0;
|
|
|
501 |
for(Walker w = m.walker(*vid); !w.full_circle(); w = w.circulate_vertex_ccw())
|
|
|
502 |
if(w.face() != InvalidFaceID)
|
|
|
503 |
vertex_areas[*vid] += area(m, w.face());
|
|
|
504 |
}
|
|
|
505 |
|
|
|
506 |
for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
|
|
|
507 |
{
|
|
|
508 |
laplacians[*vid] = Vec3d(0);
|
|
|
509 |
double weight_sum = 0.0;
|
|
|
510 |
if(boundary(m, *vid))
|
|
|
511 |
{
|
|
|
512 |
double angle_sum = 0;
|
|
|
513 |
for(Walker w = m.walker(*vid); !w.full_circle(); w = w.circulate_vertex_ccw())
|
|
|
514 |
{
|
|
|
515 |
if (w.face() != InvalidFaceID)
|
|
|
516 |
{
|
|
|
517 |
Vec3d vec_a = normalize(m.pos(w.vertex()) - m.pos(*vid));
|
|
|
518 |
Vec3d vec_b = normalize(m.pos(w.circulate_vertex_ccw().vertex()) -
|
|
|
519 |
m.pos(*vid));
|
|
|
520 |
angle_sum += acos(max(-1.0,min(1.0,dot(vec_a,vec_b))));
|
|
|
521 |
}
|
|
|
522 |
if(boundary(m,w.vertex()))
|
|
|
523 |
{
|
|
|
524 |
laplacians[*vid] += m.pos(w.vertex()) - m.pos(*vid);
|
|
|
525 |
weight_sum += 1.0;
|
|
|
526 |
}
|
|
|
527 |
}
|
|
|
528 |
laplacians[*vid] /= weight_sum;
|
|
|
529 |
laplacians[*vid] *= exp(-3.0*sqr(max(0.0, M_PI-angle_sum)));
|
|
|
530 |
}
|
|
|
531 |
else
|
|
|
532 |
{
|
|
|
533 |
for(Walker w = m.walker(*vid); !w.full_circle(); w = w.circulate_vertex_ccw())
|
|
|
534 |
{
|
|
|
535 |
float weight = vertex_areas[w.vertex()];
|
|
|
536 |
Vec3d l = m.pos(w.vertex()) - m.pos(*vid);
|
|
|
537 |
laplacians[*vid] += weight * l;
|
|
|
538 |
weight_sum += weight;
|
|
|
539 |
}
|
|
|
540 |
laplacians[*vid] /= weight_sum;
|
|
|
541 |
// Vec3d n = normal(m, *vid);
|
|
|
542 |
// if(sqr_length(n)>0.9)
|
|
|
543 |
// laplacians[*vid] -= n * dot(n, laplacians[*vid]);
|
|
|
544 |
}
|
|
|
545 |
}
|
|
|
546 |
for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
|
|
|
547 |
m.pos(*vid) += w*laplacians[*vid];
|
|
|
548 |
}
|
|
|
549 |
}
|
|
|
550 |
|
|
|
551 |
|
|
|
552 |
|
|
|
553 |
}
|