2 |
bj |
1 |
#ifndef __CGLA_ARITHSQMAT4X4FLOAT_H
|
|
|
2 |
#define __CGLA_ARITHSQMAT4X4FLOAT_H
|
|
|
3 |
|
|
|
4 |
#include "ExceptionStandard.h"
|
|
|
5 |
#include "CGLA.h"
|
|
|
6 |
#include "Vec3f.h"
|
|
|
7 |
#include "Vec3Hf.h"
|
|
|
8 |
#include "Vec4f.h"
|
|
|
9 |
#include "ArithSqMatFloat.h"
|
|
|
10 |
|
|
|
11 |
|
12 |
jab |
12 |
namespace CGLA
|
|
|
13 |
{
|
|
|
14 |
CGLA_DERIVEEXCEPTION(Mat4x4fException)
|
|
|
15 |
CGLA_DERIVEEXCEPTION(Mat4x4fNotAffine)
|
|
|
16 |
CGLA_DERIVEEXCEPTION(Mat4x4fSingular)
|
|
|
17 |
|
94 |
bj |
18 |
/** \brief 4 by 4 float matrix template.
|
|
|
19 |
|
|
|
20 |
this class template is useful for transformations such as perspective
|
12 |
jab |
21 |
projections or translation where 3x3 matrices do not suffice. */
|
|
|
22 |
template<class VT, class M>
|
|
|
23 |
class ArithSqMat4x4Float: public ArithSqMatFloat<VT, M, 4>
|
|
|
24 |
{
|
|
|
25 |
public:
|
|
|
26 |
|
|
|
27 |
/// Vector type
|
|
|
28 |
typedef VT VectorType;
|
|
|
29 |
|
|
|
30 |
/// The type of a matrix element
|
|
|
31 |
typedef typename VT::ScalarType ScalarType;
|
|
|
32 |
|
|
|
33 |
public:
|
|
|
34 |
|
|
|
35 |
/// Construct a Mat4x4f from four V vectors
|
|
|
36 |
ArithSqMat4x4Float(VT a, VT b, VT c, VT d):
|
|
|
37 |
ArithSqMatFloat<VT, M, 4> (a,b,c,d) {}
|
2 |
bj |
38 |
|
12 |
jab |
39 |
/// Construct the NAN matrix
|
|
|
40 |
ArithSqMat4x4Float() {}
|
2 |
bj |
41 |
|
12 |
jab |
42 |
/// Construct matrix where all values are equal to constructor argument.
|
|
|
43 |
explicit ArithSqMat4x4Float(ScalarType _a):
|
|
|
44 |
ArithSqMatFloat<VT,M,4>(_a) {}
|
10 |
jab |
45 |
|
12 |
jab |
46 |
/** Multiply vector onto matrix. Here the fourth coordinate
|
|
|
47 |
is se to 0. This removes any translation from the matrix.
|
|
|
48 |
Useful if one wants to transform a vector which does not
|
|
|
49 |
represent a point but a direction. Note that this is not
|
|
|
50 |
correct for transforming normal vectors if the matric
|
|
|
51 |
contains anisotropic scaling. */
|
|
|
52 |
template<class T, class VecT>
|
|
|
53 |
const VecT mul_3D_vector(const ArithVec3Float<T,VecT>& v_in) const
|
|
|
54 |
{
|
|
|
55 |
VT v_out = (*this) * VT(v_in[0],v_in[1],v_in[2],0);
|
|
|
56 |
return VecT(v_out[0],v_out[1],v_out[2]);
|
|
|
57 |
}
|
10 |
jab |
58 |
|
12 |
jab |
59 |
/** Multiply 3D point onto matrix. Here the fourth coordinate
|
|
|
60 |
becomes 1 to ensure that the point is translated. Note that
|
|
|
61 |
the vector is converted back into a Vec3f without any
|
|
|
62 |
division by w. This is deliberate: Typically, w=1 except
|
|
|
63 |
for projections. If we are doing projection, we can use
|
|
|
64 |
project_3D_point instead */
|
|
|
65 |
template<class T, class VecT>
|
|
|
66 |
const VecT mul_3D_point(const ArithVec3Float<T,VecT> & v_in) const
|
|
|
67 |
{
|
|
|
68 |
VT v_out = (*this) * VT(v_in[0],v_in[1],v_in[2],1);
|
|
|
69 |
return VecT(v_out[0],v_out[1],v_out[2]);
|
|
|
70 |
}
|
2 |
bj |
71 |
|
12 |
jab |
72 |
/** Multiply 3D point onto matrix. We set w=1 before
|
|
|
73 |
multiplication and divide by w after multiplication. */
|
|
|
74 |
template<class T, class VecT>
|
|
|
75 |
const VecT project_3D_point(const ArithVec3Float<T,VecT>& v_in) const
|
|
|
76 |
{
|
|
|
77 |
VT v_out = (*this) * VT(v_in[0],v_in[1],v_in[2],1);
|
|
|
78 |
v_out.de_homogenize();
|
|
|
79 |
return VecT(v_out[0],v_out[1],v_out[2]);
|
|
|
80 |
}
|
2 |
bj |
81 |
|
12 |
jab |
82 |
};
|
2 |
bj |
83 |
|
12 |
jab |
84 |
/** Compute the adjoint of a matrix. This is the matrix where each
|
|
|
85 |
entry is the subdeterminant of 'in' where the row and column of
|
|
|
86 |
the element is removed. Use mostly to compute the inverse */
|
|
|
87 |
template<class VT, class M>
|
|
|
88 |
M adjoint(const ArithSqMat4x4Float<VT,M>&);
|
2 |
bj |
89 |
|
12 |
jab |
90 |
/** Compute the determinant of a 4x4f matrix. */
|
|
|
91 |
template<class VT, class M>
|
|
|
92 |
double determinant(const ArithSqMat4x4Float<VT,M>&);
|
2 |
bj |
93 |
|
12 |
jab |
94 |
/// Compute the inverse matrix of a Mat4x4f.
|
|
|
95 |
template<class VT, class M>
|
|
|
96 |
M invert(const ArithSqMat4x4Float<VT,M>&);
|
2 |
bj |
97 |
|
12 |
jab |
98 |
/// Compute the inverse matrix of a Mat4x4f that is affine
|
|
|
99 |
template<class VT, class M>
|
|
|
100 |
M invert_affine(const ArithSqMat4x4Float<VT,M>&);
|
2 |
bj |
101 |
|
|
|
102 |
}
|
|
|
103 |
#endif
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
|