Subversion Repositories gelsvn

Rev

Rev 67 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
48 jrf 1
#ifndef __CGLA_QUATF_H__
2
#define __CGLA_QUATF_H__
3
 
4
#include "Vec3f.h"
5
#include "Vec4f.h"
6
#include "Mat3x3f.h"
7
#include "Mat4x4f.h"
49 jrf 8
#include <cmath>
48 jrf 9
 
10
namespace CGLA {
11
 
94 bj 12
  /** \brief A float based Quaterinion class. 
48 jrf 13
 
94 bj 14
	Quaternions are algebraic entities useful for rotation. */
15
 
48 jrf 16
  class Quatf
17
  {
18
  public:
19
 
20
    /// Vector part of quaternion
21
    Vec3f qv;
22
 
23
    /// Scalar part of quaternion
24
    float qw;
25
 
26
    /// Construct undefined quaternion
27
#ifndef NDEBUG
28
    Quatf() : qw(CGLA_INIT_VALUE) {}
29
#else
30
    Quatf() {}
31
#endif
32
 
33
    /// Construct quaternion from vector and scalar
34
    Quatf(const Vec3f& imaginary, float real = 1.0f) : qv(imaginary) , qw(real) {}
35
 
36
    /// Construct quaternion from four scalars
37
    Quatf(float x, float y, float z, float _qw) : qv(x,y,z), qw(_qw) {}
38
 
39
    /// Construct quaternion from a 4D vector
40
    explicit Quatf(const Vec4f& v) : qv(v[0], v[1], v[2]), qw(v[3]) {}
41
 
42
    /// Assign values to a quaternion
43
    void set(const Vec3f& imaginary, float real=1.0f)
44
    {
45
      qv = imaginary;
46
      qw = real;
47
    }
48
 
49
    void set(float x, float y, float z, float _qw) 
50
    {
51
      qv.set(x,y,z);
52
      qw = _qw;
53
    }
54
 
55
    void set(const Vec4f& v)
56
    {
57
      qv.set(v[0], v[1], v[2]);
58
      qw = v[3];		  
59
    }
60
 
61
    /// Get values from a quaternion
62
    void get(float& x, float& y, float& z, float& _qw) const
63
    {
64
      x  = qv[0];
65
      y  = qv[1];
66
      z  = qv[2];
67
      _qw = qw;
68
    }
69
 
70
    /// Get imaginary part of a quaternion
71
    Vec3f get_imaginary_part() const { return qv; }
72
 
73
    /// Get real part of a quaternion
74
    float get_real_part() const { return qw; }
75
 
76
    /// Get a 3x3 rotation matrix from a quaternion
49 jrf 77
    Mat3x3f get_mat3x3f() const
78
    {
79
      float s = 2/norm();
80
      // note that the all q_*q_ are used twice (optimize)
81
      return Mat3x3f(Vec3f(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
82
			         s*(qv[0]*qv[1] - qw*qv[2]),
83
			         s*(qv[0]*qv[2] + qw*qv[1])),
84
		     Vec3f(      s*(qv[0]*qv[1] + qw*qv[2]),
85
  			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
86
			         s*(qv[1]*qv[2] - qw*qv[0])),
87
		     Vec3f(      s*(qv[0]*qv[2] - qw*qv[1]),
88
			         s*(qv[1]*qv[2] + qw*qv[0]),
89
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1])));
90
    }
48 jrf 91
 
92
    /// Get a 4x4 rotation matrix from a quaternion
49 jrf 93
    Mat4x4f get_mat4x4f() const
94
    {
95
      float s = 2/norm();
96
      // note that the all q_*q_ are used twice (optimize?)
97
      return Mat4x4f(Vec4f(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
98
			         s*(qv[0]*qv[1] - qw*qv[2]),
99
			         s*(qv[0]*qv[2] + qw*qv[1]),
100
		           0.0),
101
		     Vec4f(      s*(qv[0]*qv[1] + qw*qv[2]),
102
			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
103
			         s*(qv[1]*qv[2] - qw*qv[0]),
104
			   0.0),
105
		     Vec4f(      s*(qv[0]*qv[2] - qw*qv[1]),
106
			         s*(qv[1]*qv[2] + qw*qv[0]),
107
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1]),
108
			   0.0),
109
		     Vec4f(0.0, 0.0, 0.0, 1.0));
110
    }
48 jrf 111
 
112
    /// Obtain angle of rotation and axis
49 jrf 113
    void get_rot(float& angle, Vec3f& v)
114
    {
115
      angle = 2*std::acos(qw);
48 jrf 116
 
49 jrf 117
      if(angle < TINY) 
118
	v = Vec3f(1.0, 0.0, 0.0);
119
      else 
120
	v = qv*(1/std::sin(angle));
121
 
122
      if(angle > M_PI)
123
	v = -v;
124
 
125
      v.normalize();      
126
    }
127
 
48 jrf 128
    /// Construct a Quaternion from an angle and axis of rotation.
49 jrf 129
    void make_rot(float angle, const Vec3f& v)
130
    {
131
      angle /= 2.0;
132
      qv = CGLA::normalize(v)*std::sin(angle);
133
      qw = std::cos(angle);
134
    }
48 jrf 135
 
136
    /** Construct a Quaternion rotating from the direction given
137
	by the first argument to the direction given by the second.*/
49 jrf 138
    void make_rot(const Vec3f& s,const Vec3f& t)
139
    {
140
      float tmp = std::sqrt(2*(1 + dot(s, t)));
141
      qv = cross(s, t)*(1.0/tmp);
142
      qw = tmp/2.0;    
143
    }
48 jrf 144
 
145
    //----------------------------------------------------------------------
146
    // Binary operators
147
    //----------------------------------------------------------------------
148
 
149
    bool operator==(const Quatf& q) const
150
    {
151
      return qw == q.qw && qv == q.qv;
152
    }
153
 
154
    bool operator!=(const Quatf& q) const
155
    {
156
      return qw != q.qw || qv != q.qv;
157
    }
158
 
159
    /// Multiply two quaternions. (Combine their rotation)
160
    Quatf operator*(const Quatf& q) const
161
    {
162
      return Quatf(cross(qv, q.qv) + qv*q.qw + q.qv*qw, 
163
		         qw*q.qw - dot(qv, q.qv));      
164
    }
165
 
166
    /// Multiply scalar onto quaternion.
167
    Quatf operator*(float scalar) const
168
    {
169
      return Quatf(qv*scalar, qw*scalar);
170
    }
171
 
172
    /// Add two quaternions.
173
    Quatf operator+(const Quatf& q) const
174
    {
175
      return Quatf(qv + q.qv, qw + q.qw);
176
    }
177
 
178
    //----------------------------------------------------------------------
179
    // Unary operators
180
    //----------------------------------------------------------------------
181
 
182
    /// Compute the additive inverse of the quaternion
183
    Quatf operator-() const { return Quatf(-qv, -qw); }
184
 
185
    /// Compute norm of quaternion
186
    float norm() const { return dot(qv, qv) + qw*qw; }
187
 
188
    /// Return conjugate quaternion
189
    Quatf conjugate() const { return Quatf(-qv, qw); }
190
 
191
    /// Compute the multiplicative inverse of the quaternion
192
    Quatf inverse() const { return Quatf(conjugate()*(1/norm())); }
193
 
194
    /// Normalize quaternion.
195
    Quatf normalize() { return Quatf((*this)*(1/norm())); }
196
 
197
    //----------------------------------------------------------------------
198
    // Application
199
    //----------------------------------------------------------------------
200
 
201
    /// Rotate vector according to quaternion
202
    Vec3f apply(const Vec3f& vec) const 
203
    {
204
      return ((*this)*Quatf(vec)*inverse()).qv;
205
    }
206
 
207
    /// Rotate vector according to unit quaternion
208
    Vec3f apply_unit(const Vec3f& vec) const
209
    {
210
      return ((*this)*Quatf(vec)*conjugate()).qv;
211
    }
212
  };
213
 
214
  inline Quatf operator*(float scalar, const Quatf& q)
215
  {
216
    return q*scalar;
217
  }
218
 
219
  /** Perform linear interpolation of two quaternions. 
220
      The last argument is the parameter used to interpolate
221
      between the two first. SLERP - invented by Shoemake -
222
      is a good way to interpolate because the interpolation
223
      is performed on the unit sphere. 	
224
  */
49 jrf 225
  inline Quatf slerp(Quatf q0, Quatf q1, float t)
226
  {
227
    float angle = std::acos(q0.qv[0]*q1.qv[0] + q0.qv[1]*q1.qv[1] 
228
			    + q0.qv[2]*q1.qv[2] + q0.qw*q1.qw);
229
    return (q0*std::sin((1 - t)*angle) + q1*std::sin(t*angle))*(1/std::sin(angle));
230
  }
48 jrf 231
 
232
  /// Create an identity quaternion
233
  inline Quatf identity_Quatf()
234
  {
235
    return Quatf(Vec3f(0.0));
236
  }
237
 
238
  /// Print quaternion to stream.
239
  inline std::ostream& operator<<(std::ostream&os, const Quatf v)
240
  {
241
    os << "[ ";
242
    for(unsigned int i=0;i<3;i++) os << v.qv[i] << " ";
243
    os << "~ " << v.qw << " ";
244
    os << "]";
245
 
246
    return os;
247
  }
248
}
249
#endif