Subversion Repositories gelsvn

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
660 khor 1
/* ----------------------------------------------------------------------- *
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
3
 * Copyright (C) the authors and DTU Informatics
4
 * For license and list of authors, see ../../doc/intro.pdf
5
 * ----------------------------------------------------------------------- */
6
 
7
#include "curvature.h"
8
 
9
#include <iostream>
10
#include "../CGLA/eigensolution.h"
11
#include "../CGLA/Vec2d.h"
12
#include "../CGLA/Vec3d.h"
13
#include "../CGLA/Mat3x3d.h"
14
#include "../CGLA/Mat2x2d.h"
15
#include "../CGLA/Mat2x3d.h"
16
 
17
#include "Manifold.h"
18
#include "AttributeVector.h"
19
#include "x3d_save.h"
20
#include "x3d_load.h"
21
#include "obj_load.h"
22
#include "mesh_optimization.h"
23
 
24
#include "../LinAlg/Matrix.h"
25
#include "../LinAlg/Vector.h"
26
#include "../LinAlg/LapackFunc.h"
27
 
28
using namespace std;
29
 
30
using namespace LinAlg;
31
using namespace CGLA;
32
using namespace HMesh;
33
 
34
namespace HMesh
35
{
36
    namespace 
37
    {
38
        //double scal = 0.001;
39
        //double vector_scal = 0.001;
40
 
41
        template<class T> 
42
        void smooth_something_on_mesh(const Manifold& m, VertexAttributeVector<T>& vec, int smooth_steps)
43
        {
44
            for(int iter=0;iter<smooth_steps;++iter){
45
                VertexAttributeVector<T> new_vec(m.allocated_vertices());
46
                for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
47
                    new_vec[*v] = vec[*v];
48
                    for(Walker w = m.walker(*v); !w.full_circle(); w = w.circulate_vertex_cw()){
49
                        new_vec[*v] += vec[w.vertex()];
50
                    }
51
                    new_vec[*v] /= (valency(m, *v) + 1.0);
52
                }
53
                swap(vec,new_vec);
54
            }		
55
        }
56
    }
57
 
58
    double voronoi_area(const Manifold& m, VertexID v)
59
    {
60
        double area_mixed = 0;
61
        //For each triangle T from the 1-ring neighborhood of x
62
        for(Walker w = m.walker(v); !w.full_circle(); w = w.circulate_vertex_cw()){
63
            double f_area = area(m, w.face());
64
 
65
            Vec3d v0(m.pos(v));
66
            Vec3d v1(m.pos(w.vertex()));
67
            Vec3d v2(m.pos(w.next().vertex()));
68
 
69
            double a0 = acos(dot(v1-v0, v2-v0)/(length(v1-v0)*length(v2-v0)));
70
            double a1 = acos(dot(v2-v1, v0-v1)/(length(v2-v1)*length(v0-v1)));
71
            double a2 = acos(dot(v0-v2, v1-v2)/(length(v0-v2)*length(v1-v2)));
72
 
73
            if(a0>(M_PI/2.0) && a1>(M_PI/2.0) && a2>(M_PI/2.0)) // f is non-obtuse
74
            {
75
                // Add Voronoi formula (see Section 3.3)
76
                area_mixed += (1.0/8) * 
77
                    ((1.0/tan(a1)) * sqr_length(v2-v0) + 
78
                    (1.0/tan(a2)) * sqr_length(v1-v0));
79
            }
80
            else // Voronoi inappropriate
81
            {
82
                // Add either area(f)/4 or area(f)/2
83
                if(a0>M_PI/2.0)// the angle of f at x is obtuse
84
                    area_mixed += f_area/2;
85
                else
86
                    area_mixed += f_area/4;
87
            }
88
        }
89
        return area_mixed;
90
    }
91
 
92
    double barycentric_area(const Manifold& m, VertexID v)
93
    {
94
        double barea = 0;
95
        //For each triangle T from the 1-ring neighborhood of x
96
        for(Walker w = m.walker(v); !w.full_circle(); w = w.circulate_vertex_cw()){
97
            barea += area(m, w.face())/3.0;
98
        }
99
        return barea;
100
    }
101
 
102
    void unnormalized_mean_curvature_normal(const Manifold& m, VertexID v, Vec3d& curv_normal, double& w_sum)
103
    {
104
        if(boundary(m, v))
105
            return;
106
 
107
        Vec3d vertex(m.pos(v));
108
        curv_normal = Vec3d(0);
109
        w_sum = 0;
110
        for(Walker walker = m.walker(v); !walker.full_circle(); walker = walker.circulate_vertex_ccw()){
111
            Vec3d nbr(m.pos(walker.vertex()));
112
            Vec3d left(m.pos(walker.next().vertex()));
113
            Vec3d right(m.pos(walker.opp().next().vertex()));
114
 
115
            double d_left = dot(cond_normalize(nbr-left),cond_normalize(vertex-left));
116
            double d_right = dot(cond_normalize(nbr-right),cond_normalize(vertex-right));
117
            double a_left  = acos(min(1.0, max(-1.0, d_left)));
118
            double a_right = acos(min(1.0, max(-1.0, d_right)));
119
 
120
            double w = 1.0/(1e-300+tan(a_left));
121
            w += 1.0/(1e-300+tan(a_right));
122
//            double w = sin(a_left + a_right) / (1e-300 + sin(a_left)*sin(a_right));
123
            curv_normal += w * (nbr-vertex);
124
            w_sum += w;
125
        }
126
 
127
    }
128
 
129
    Vec3d mean_curvature_normal(const Manifold& m, VertexID v)
130
    {
131
        Vec3d curv_normal;
132
        double w_sum;
133
        unnormalized_mean_curvature_normal(m, v, curv_normal, w_sum);
134
 
135
        return curv_normal / (4*voronoi_area(m, v));
136
    }
137
 
138
    double sum_curvatures(const Manifold& m, VertexAttributeVector<double>& curvature)
139
    {
140
        double sum = 0;
141
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
142
            if(boundary(m, *v))
143
                continue;	
144
            sum += curvature[*v] * voronoi_area(m, *v);
145
        }
146
        return sum;
147
    }
148
 
149
 
150
    double gaussian_curvature_angle_defect(const Manifold& m, VertexID v)
151
    {
152
        if(boundary(m, v))
153
            return 0;
154
 
155
        Vec3d vertex(m.pos(v));
156
        vector<Vec3d> edges;
157
        for(Walker w = m.walker(v); !w.full_circle(); w = w.circulate_vertex_cw()){
158
            Vec3d e(normalize(m.pos(w.vertex()) - vertex));
159
            edges.push_back(e);
160
        }
161
        size_t N=edges.size();
162
        double angle_sum = 0;
163
        for(size_t i = 0; i < N; ++i)
164
        {
165
            double dot_prod = 
166
                std::max(-1.0, std::min(1.0, dot(edges[i],edges[(i+1)%N])));
167
            angle_sum += acos(dot_prod);
168
        }
169
        return (2*M_PI - angle_sum)/voronoi_area(m, v);
170
 
171
    }
172
 
173
    Mat3x3d curvature_tensor(const Manifold& m, HalfEdgeID h)
174
    {
175
        if(boundary(m, h))
176
            return Mat3x3d(0);
177
 
178
        Walker w = m.walker(h);
179
        Vec3d edge(m.pos(w.vertex()) - m.pos(w.opp().vertex()));
180
        double edge_len = length(edge);
181
        edge /= edge_len;
182
 
183
        Vec3d h_norm(normal(m, w.face()));
184
        Vec3d h_opp_norm(normal(m, w.opp().face()));
185
 
186
        Vec3d nc = cross(h_norm, h_opp_norm);
187
 
188
        double sign = (dot(nc, edge) >= 0) ? 1 : -1;
189
        double beta = asin(nc.length());
190
 
191
        Mat3x3d mat;
192
        outer_product(edge, edge, mat);
193
        return sign * edge_len * beta * mat;
194
    }
195
 
196
    Mat3x3d curvature_tensor_from_edges(const Manifold& m, VertexID v)
197
    {
198
        Mat3x3d curv_tensor(0);
199
 
200
        if(boundary(m, v))
201
            return curv_tensor;
202
 
203
        for(Walker w = m.walker(v); !w.full_circle(); w = w.circulate_vertex_cw())
204
            curv_tensor += 0.5*curvature_tensor(m, w.halfedge());
205
 
206
        curv_tensor /= voronoi_area(m, v);
207
 
208
        return curv_tensor;
209
    }
210
 
211
 
212
    void curvature_tensor_paraboloid(const Manifold& m, VertexID v, Mat2x2d& curv_tensor, Mat3x3d& frame)
213
    {
214
        if(boundary(m, v))
215
            return;
216
        // First estimate the normal and compute a transformation matrix
217
        // which takes us into tangent plane coordinates.
218
        Vec3d Norm = Vec3d(normal(m, v));
219
        Vec3d X,Y;
220
        orthogonal(Norm,X,Y);
221
        frame = Mat3x3d(X,Y,Norm);
222
        Vec3d centre(m.pos(v));
223
 
224
        vector<Vec3d> points;
225
        for(Walker w = m.walker(v); !w.full_circle(); w = w.circulate_vertex_cw())
226
            points.push_back(Vec3d(m.pos(w.vertex())));
227
 
228
        int N = int(points.size());
229
 
230
        CVector b(N);
231
        // Compute the matrix of parameter values
232
        CMatrix PMat(N, 3);
233
        for(int i = 0; i < N; ++i){
234
            Vec3d p = frame * (points[i]-centre);
235
            b[i] = p[2];
236
 
237
            PMat.set(i,0,0.5*sqr(p[0]));
238
            PMat.set(i,1,p[0]*p[1]);
239
            PMat.set(i,2,0.5*sqr(p[1]));
240
        }
241
 
242
        // Compute the coefficients of the polynomial surface
243
        CVector x(3);
244
        x = LinearLSSolve(PMat,b);
245
        if(isnan(x[0])) cout << __LINE__ << " " << PMat << b << endl ;
246
 
247
        // Finally compute the shape tensor from the coefficients
248
        // using the first and second fundamental forms.
249
        curv_tensor = - Mat2x2d(x[0],x[1],x[1],x[2]);
250
 
251
    }
252
 
253
    void curvature_tensors_from_edges(const Manifold& m, VertexAttributeVector<Mat3x3d>& curvature_tensors)
254
    {
255
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v)
256
            curvature_tensors[*v] = curvature_tensor_from_edges(m, *v);
257
    }
258
 
259
    void smooth_curvature_tensors(const Manifold& m, VertexAttributeVector<Mat3x3d>& curvature_tensors)
260
    {
261
        assert(curvature_tensors.size() == m.allocated_vertices());
262
        VertexAttributeVector<Mat3x3d> tmp_curvature_tensors(m.allocated_vertices());
263
        double tmp_area;
264
 
265
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
266
            if(boundary(m, *v))
267
                continue;
268
            double a = voronoi_area(m, *v);
269
            tmp_curvature_tensors[*v] = curvature_tensors[*v] * a;
270
            tmp_area = a;
271
            for(Walker w = m.walker(*v); !w.full_circle(); w = w.circulate_vertex_cw()){
272
                if(!boundary(m, w.vertex())){
273
                    double a = voronoi_area(m, w.vertex());
274
                    tmp_curvature_tensors[*v] += curvature_tensors[w.vertex()]*a;
275
                    tmp_area += a;
276
                }
277
                tmp_curvature_tensors[*v] /= tmp_area;
278
            }
279
        }
280
        curvature_tensors = move(tmp_curvature_tensors);
281
    }
282
 
283
    void gaussian_curvature_angle_defects(const Manifold& m, VertexAttributeVector<double>& curvature, int smooth_steps)
284
    {
285
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v)
286
            curvature[*v] = gaussian_curvature_angle_defect(m, *v);
287
 
288
        smooth_something_on_mesh(m, curvature, smooth_steps);
289
    }
290
 
291
    void mean_curvatures(const Manifold& m, VertexAttributeVector<double>& curvature, int smooth_steps)
292
    {
293
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v)
294
			if(!boundary(m,*v))
295
			{
296
				Vec3d N = -mean_curvature_normal(m, *v);
297
				curvature[*v] = length(N) * sign(dot(N,Vec3d(normal(m, *v))));
298
			}	
299
        smooth_something_on_mesh(m, curvature, smooth_steps);	
300
    }
301
 
302
 
303
    void curvature_paraboloids( const Manifold& m, 
304
                                VertexAttributeVector<Vec3d>& min_curv_direction, 
305
                                VertexAttributeVector<Vec3d>& max_curv_direction,
306
                                VertexAttributeVector<Vec2d>& curvature)
307
    {
308
 
309
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
310
            Mat2x2d tensor;
311
            Mat3x3d frame;
312
            curvature_tensor_paraboloid(m, *v, tensor, frame);
313
 
314
            Mat2x2d Q,L;
315
            int s = power_eigensolution(tensor, Q, L);
316
 
317
            if(s < 2)	
318
                cout << tensor << Q << L << endl;
319
 
320
            int max_idx = 0;
321
            int min_idx = 1;
322
 
323
            if(L[max_idx][max_idx]<L[min_idx][min_idx]) swap(max_idx, min_idx);
324
 
325
            Mat3x3d frame_t = transpose(frame);
326
 
327
            max_curv_direction[*v] = cond_normalize(frame_t * Vec3d(Q[max_idx][0], Q[max_idx][1], 0));
328
 
329
            min_curv_direction[*v] = cond_normalize(frame_t * Vec3d(Q[min_idx][0], Q[min_idx][1], 0));
330
 
331
            curvature[*v][0] = L[min_idx][min_idx];
332
            curvature[*v][1] = L[max_idx][max_idx];
333
        }
334
    }
335
 
336
 
337
    void curvature_from_tensors(const Manifold& m,
338
                                const VertexAttributeVector<Mat3x3d>& curvature_tensors,
339
                                VertexAttributeVector<Vec3d>& min_curv_direction,
340
                                VertexAttributeVector<Vec3d>& max_curv_direction,
341
                                VertexAttributeVector<Vec2d>& curvature)
342
    {
343
        assert(curvature_tensors.size() == m.allocated_vertices());
344
 
345
        double max_val = -1e30;
346
        for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
347
            Mat3x3d C,Q,L;
348
            C = curvature_tensors[*v];
349
            int s = power_eigensolution(C, Q, L);
350
            Vec3d dmin, dmax;
351
            if(s == 0)
352
            {
353
                Vec3d n(normal(m, *v));
354
                orthogonal(n, dmin, dmax);
355
                curvature[*v] = Vec2d(0);
356
                cout << " rank 0 " << endl;
357
            }
358
            else if(s == 1)
359
            {
360
                Vec3d n(normal(m, *v));
361
                dmin = normalize(Q[0]);
362
                dmax = cross(n, dmin);
363
                curvature[*v] = Vec2d(0);
364
                cout << " rank 1 " << endl;
365
            }
366
            else
367
            {
368
                Vec2d l(fabs(L[0][0]), fabs(L[1][1]));
369
 
370
                int max_idx = 0;
371
                int min_idx = 1;
372
 
373
                if(l[max_idx] < l[min_idx]) swap(max_idx, min_idx);
374
 
375
                // Yes - the biggest eigenvalue corresponds to the min direction
376
                // and vice versa.
377
                dmin = normalize(Q[max_idx]);
378
                dmax = normalize(Q[min_idx]);
379
 
380
                curvature[*v][0] = L[min_idx][min_idx];
381
                curvature[*v][1] = L[max_idx][max_idx];
382
 
383
            }
384
            min_curv_direction[*v] = dmin;
385
            max_curv_direction[*v] = dmax;
386
            max_val = max(fabs(curvature[*v][1]), max_val);
387
 
388
        }
389
        //scal = 1.0/max_val;
390
    }
391
}
392