
Introduction to GEL
An informal introduction to the GEL library with many examples of usage.

J. Andreas Bærentzen

August 27, 2013

Contents
1 Introduction 2

1.1 Overview of GEL . 2

2 CGLA 3
2.1 Naming conventions . 3
2.2 How to use CGLA . 4
2.3 CGLA: Examples of Usage . 4

3 HMesh 6
3.1 Walker . 8
3.2 Attributes . 10
3.3 Extended Example: Edge Flipping 11
3.4 HMesh tools . 13

4 GLGraphics 13

5 LinAlg 17

6 Geometry 17

7 Util 19

8 Authors 19

9 License 19

10 Open Source Code used in GEL 20

1

1 Introduction
GEL is an abbreviation of GEometry and Linear algebra. GEL is a C++ library with
tools for manipulating digital representations of geometry such as polygonal meshes,
triangle meshes, point clouds, and voxel grids. Since linear algebra tools are invariably
needed for this, GEL also contains tools for linear algebra. Finally, GEL contains tools
for drawing geometry using OpenGL and various utilities.

This document pertains to the version of GEL which is distributed on CampusNet
for 02585. This version of GEL comes with project files for Visual Studio 9 and XCode
and examples relevant for the course are included in the distribution.

GEL is not documented as well as we would like, but a fair amount of Doxygen
documentation is provided for those parts of GEL which are used a lot. You will find
the reference manual at http://www2.imm.dtu.dk/courses/02585/GELref/index.html

Please use it. Autogenerated documentation is not eminently readable, but it is
much better than no documentation and it should be relatively complete for the parts
of GEL needed in the course.

The goal of this document is to provide more detail and to help people getting
started. In particular, this document focuses on functionality in the CGLA and HMesh
namespaces, but we shall also take a look at some other parts of GEL. Unfortunately,
it is rather difficult to be complete: There is functionality in GEL not covered here.
Consequently, if you are looking for something particular, we entreat you to look at
the reference linked to above

1.1 Overview of GEL
GEL contains many tools for geometry processing and a number of data structures.
Perhaps the most important is the Manifold class which resides in the HMesh names-
pace. A Manifold is a halfedge based representation of a polygonal mesh. There is
also a simpler triangle mesh data structure, TriMesh, based on an indexed face set.
There are several voxel grid data structures, a fairly efficient k-D tree for storing points,
bounding box hierarchies etc.

A number of algorithms exist for manipulating these representations of geometric
data. For instance, Manifold has a function for mesh simplification, several functions
for smoothing (including anisotropic), mesh optimization, and mesh clean up. Another
strong point of GEL is the fact that it contains good support for converting between
representations; especially between meshes and voxel grids. There are several tools
for polygonizing isosurfaces and also converting meshes to distance fields. The tools
pertaining to the Manifold data structure are in the HMesh namespace. The other
geometry related tools are in the Geometry namespace.

There are two packages for linear algebra: CGLA is strictly for small vectors and
matrices (dimensions 2,3, and 4). LinAlg is a Lapack wrapper for slightly larger
problems. At this point, it is fairly simple but includes a number of functions for
solving linear systems, factoring matrices and finding eigensolutions for symmetric
matrices.

GLGraphics contains facilities for drawing entities from other parts of GEL via
OpenGL. Especially TriMesh and Manifold have good support. For instance, there
is a nice wireframe drawing class. There are also two virtual trackballs for interactive
programs and some tools for viewing in interactive programs and SOIL a small open
source library for image loading by Jonathan Dummer.

2

http://www2.imm.dtu.dk/courses/02585/GELref/index.html

Finally there are some utilities in Util: Getting command line arguments, hash
table classes, a 2D grid class, a resource manager, an XML parser by Jeppe Frisvad
and other tools.

2 CGLA
CGLA is a set of numerical C++ vector and matrix classes and class templates designed
with computer graphics in mind. CGLA stands for “Computer Graphics Linear Alge-
bra”. Let us get right down to the obvious question: Why create another linear algebra
package? Well, CGLA evolved from a few matrix and vector classes because I didn’t
have anything better. Also, I created CGLA to experiment with some template program-
ming techniques. This led to the most important feature of CGLA, namely the fact that
all vector types are derived from the same template.

This makes it easy to ensure identical semantics: Since all vectors have inherited,
say, the * operator from a common ancestor, it works the same for all of them.

It is important to note that CGLA was designed for Computer Graphics (not numer-
ical computations) and this had a number of implications. Since, in computer graphics
we mainly need small vectors of dimension 2,3, or 4 CGLA was designed for vectors of
low dimensionality. Moreover, the amount of memory allocated for a vector is decided
by its type at compile time. CGLA does not use dynamic memory. CGLA also does
not use virtual functions, and most functions are inline. These features all help making
CGLA relatively fast.

Of course, other libraries of vector templates for computer graphics exist, but to my
knowledge none where the fundamental templates are parametrized w.r.t. dimension as
well as type. In other words, we have a template (ArithVec) that gets both type (e.g.
float) and dimension (e.g. 3) as arguments. the intended use of this template is as
ancestor of concrete types such as Vec3f - a 3D floating point type.

The use of just one template as basis is very important, I believe, since it makes
it extremely simple to add new types of vectors. Another very generic template is
ArithMatwhich is a template for matrix classes. (and not necessarily NxN matrices).

From a users perspective CGLA contains a number of vector and matrix classes, a
quaternion and some utility classes. In summary, the most important features are

• A number of 2, 3 and 4 d vector classes.

• A number of Matrix classes.

• A Quaternion class.

• Some test programs.

• Works well with OpenGL.

2.1 Naming conventions
Vectors in CGLA are named VecDT where D stands for dimension at T for type. For
instance a 3D floating point vector is named Vec3f. Other types are d (double), s
(short), i (int), uc (unsigned char), and usi (unsigned shourt int).

Matrices are similiarly named MatDxDT. For instance a 4D double matrix is
called Mat4x4d.

3

2.2 How to use CGLA
If you need a given CGLA class you can find the header file that contains it in this
document. Simply include the header file and use the class. Remember also that all
CGLA functions and classes live in the CGLA namespace! Lastly, look at the example
programs that came with the code.

An important point is that you should never use the Arith... classes directly. Classes
whose names begin with Arith are templates used for deriving concrete types. It is
simpler, cleaner, and the intended thing to do to only use the derived types.

In some cases, you may find that you need a vector or matrix class that I haven’t
defined. If so, it is fortunate that CGLA is easy to extend. Just look at, say, Vec4f if
you need a Vec5d class.

For some more specific help look at the next section where some of the commonly
used operations are shown.

2.3 CGLA: Examples of Usage
The examples below are by no means complete. Many things are possible but not
covered below. However, most of the common usage is shown, so this should be
enough to get you started. Note that in the following we assume that you are using
namespace CGLA and hence don’t prefix with CGLA::.

In short, to compile the examples below you would need the following in the top of
your file

#include <iostream> // For input output
#include "CGLA/Vec3f.h"
#include "CGLA/Quaternion.h"
#include "CGLA/Mat4x4f.h"

using namespace std; // For input output
using namespace CGLA;

To begin with let us create 3 3D vectors. This is done as follows:

Vec3f p0(10,10,10);
Vec3f p1(20,10,10);
Vec3f p2(10,20,10);

if we had left out the arguments the three vectors would have been uninitialized, at
least in release mode. If we compile in debug mode they would have been initialized
to “Not a Number” to aid debugging. However, the [10 10 10]T vector could also have
been created differently, using

Vec3f p0(10);

We often need arithmetic operators which work on vectors and matrices. This is
supported by CGLA through overloaded versions of the standard arithmetic operators.
Using Vec3f and + as examples, we have the following syntax:

Vec3f p0(0,1,2);
Vec3f p1(0,1,0);

Vec3f p2 = p0 + p1;
p2 += p1; // Same as p2 = p2 + p1

4

Thus both the normal form of + and the assignment form are supported for Vec3f.
The same is true of the other arithmetic operators -*/ and the operators are supported
for most CGLA entities including all matrix and vector types.

Multiplication is also supported for matrix vector products:

Vec4d p0(1,1,0,1);

Mat4x4d m = rotation_Mat4x4d(ZAXIS, 3.14);

Vec4d p1 = m * p0;

but all vectors are column vectors, so only right multiplication is supported. We
cannot multiply a vector on the left side of a matrix. However, there is, of course, a
dot function which computes the dot product of two vectors.

A very common operation is to compute the normal of a triangle from the position
of its vertices. Assuming the three vectors represent the vertices of a triangle, we can
compute the normal by finding the vector from the first vertex to the two other vertices,
taking the cross product and normalizing the result. This is a one-liner:

Vec3f n = normalize(cross(p1-p0,p2-p0));

Quite a lot goes on in the snippet above. Observe that the - operator also works
for vectors. In fact almost all the arithmetic operators work for vectors. You can also
use assignment operators (i.e +=) which is often faster. Then there is the function
cross which simply computes the cross product of its arguments. Finally the vector
is normalized using the function normalize.

Of course, we can print all or at least most CGLA entities. For example

cout << n << endl;

will print the normal vector just computed. We can also treat a vector as an array
as shown below

float x = n[0];

here, of course, we just extracted the first coordinate of the vector.
CGLA contains a number of features that are not used very frequently, but which

are used frequently enough to warrent inclusion. A good example is assigning to a
vector using spherical coordinates:

Vec3f p;
p.set_spherical(0.955317, 3.1415926f/4.0f , 1);

CGLA also includes a quaternion class. Here it is used to construct a quaternion
which will rotate the x axis into the y axis.

Quaternion q;
q.make_rot(Vec3f(1,0,0), Vec3f(0,1,0));

Next, we construct a 4×4 matrix m and assign a translation matrix to the newly con-
structed matrix. After that we ask the quaternion to return a 4×4 matrix corresponding
to its rotation. This rotation matrix is then multiplied onto m.

5

Mat4x4f m = translation_Mat4x4f(Vec3f(1,2,3));
m *= q.get_mat4x4f();

Just like for vectors, the subscript operator works on matrices. However, in this
case there are two indices. Just using one index will return the ith row as a vector as
shown on the first line below. On the second line we see that using two indices will get
us an element in the matrix.

Vec4f v4 = m[0];
float c = m[0][3];

There is a number of constructors for vectors. The default constructor will create a
null vector as we have already seen. We can also specify all the coordinates. Finally,
we can pass just a single number a. This will create the [a a a]T vector. For instance,
below we create the [1 1 1]T vector. Subsequently, this vector is multiplied onto m.

Vec3f p(1);
Vec3f p2 = m.mul_3D_point(p);

Note though that m is a 4 × 4 matrix so ... how is that possible? Well, we use
the function mul 3D point which, effectively, adds a w = 1 coordinate to p mak-
ing it a 4D vector. This w coordinate is stripped afterwards. In practice, this means
that the translation part of the matrix is also applied. There is a similar function
mul 3D vector if we want to transform vectors without having the translation. This
function, effectively, sets w = 0.

Finally, CGLA is often used together with OpenGL although there is no explicit tie
to the OpenGL library. However, we can call the get function of most CGLA entities
to get a pointer to the contents. E.g. p.get() will return a pointer to the first float in
the 3D vector p. This can be used with OpenGL’s “v” functions as shown below.

glVertex3fv(p.get());

3 HMesh
HMesh’s Manifold class is a halfedge based mesh data structure. To use the basic
functionality you need to include the Manifold.h header and use the appropriate name
space:

#include <Manifold.h>
using namespace HMesh;

This type of data structure restricts you to manifolds, but allows for general N-gons
for arbitrary N and makes manipulation somewhat simpler than other types of data
structures for meshes. Note that this particular implementation does not allow more
than one loop per face.

Since the halfedge representation can only represent polygonized manifolds, the
name of the data structure is

Manifold m;

6

The central element of the data structure is the halfedge. A halfedge is a representation
of an edge, but it is imbued with a direction: it represents the edge in the counter-
clockwise loop around one of the two faces that share the edge. Thus, we always have
two halfedges for a given edge, and a halfedge contains an integer index that points
to its opposite halfedge. Similarly, indices point to the next and the previous halfedge
in a counterclockwise loop as well as the incident face and the incident vertex in the
direction of the halfedge.

A vertex has an integer index referencing one of the halfedges which emanate from
the vertex, and a face has the index of one of the halfedges in the loop around the
face. The entities and the integer indices used to refer from one entity to another are
illustrated in Figure 1. Note also that the pointers from an entity to another, e.g. from
a halfedge to its next edge is the mechanism that allows us to traverse the mesh.

opp

face prevnext

vertex

h

last

Figure 1: A halfedge and related entities. The halfedge has pointers to the next and
previous (prev) halfedges in the counterclockwise loop around its face. It also has a
pointer to the opposite (opp) halfedge, which corresponds to the same geometric edge
but is part of the loop around the adjacent face. Finally, the halfedge has a pointer to
the next vertex in the direction of the halfedge and to its face. A face has a pointer
to exactly one halfedge (last) and a vertex has a pointer to one outgoing halfedge
(h). The word “pointer” is a bit of a misnomer. In GEL we use integer indices instead
of memory pointers.

The integer indices are not only used to store references from one entity to another.
In GEL, we do not directly access entities but use integer IDs to refer to them. For
instance to get the position of a vertex, which is stored as a Vec3d, we need

VertexID vid;
// ... obtain a vertex ID
vec3d p = m.pos(vid);

Note that m.pos(vid) returns a reference to the vertex identified by vid, so we can also
assign the vertex position simply using

m.pos(vid) = p;

VertexID, FaceID, and HalfEdgeID are simply indices which we use to refer to
entities in the mesh. These types are used to communicate with the Manifold class.
For instance to get the position of a vertex, but many other functions – both inside and
outside the Manifold class take one of the ID types as argument. For instance,

7

VertexID Manifold::split_edge(HalfEdgeID h);

splits an edge and returns a VertexID for the introduced vertex. For functions outside
the class, we need to also give the Manifold as an argument since an ID does not tell
the function which mesh we are referring to. For example

bool boundary(const Manifold& m, HalfEdgeID h);

returns true if the halfedge identified by h is a boundary edge in m.
A very frequent operation is that we need to iterate over all the vertices in a mesh.

This is done as follows:

for(VertexID v : m.vertices())
{

Vec3d p = m.pos(v);
// Do something with the position

}

Since we also have ID types for faces and half edges, similar code could have been
used to iterate over these entities. As a note: there are also specific iterator classes (e.g.
VertexIDIterator) which can be used to iterate with old fashioned for loops.
However, the syntax is far more cumbersome, so we suggest you stick with the range
based for loops as shown above.

3.1 Walker
To loop over all vertices is one way of traversing the mesh. It ensures that we visit all
vertices, but it does not relate to the connectivity of the mesh. To traverse the mesh in
a way that respects connectivity, we use the Walker class. A Walker always points
to a specific halfedge, but unlike a HalfEdgeID, it can be used to move from edge to
edge. For instance, to compute the centroid for a given face, we can use the following
code:

Vec3d p(0);
FaceID f = m.faces();
Walker w = m.walker(f);
for(; !w.full_circle(); w = w.next())

p += m.pos(w.vertex());
p /= w.no_steps();

The code above computes the centroid for the first face in the mesh. It does so by
jumping from edge to edge until it has come full circle. For each jump, we add the
vertex pointed to by the halfedge to p. The benefit of the Walker is that it allows us
to move from a halfedge to all connected halfedges. The simple traversal functions are
next, prev, and opp:

Walker w;
w = w.next();
w = w.prev();
w = w.opp();

prev does the same as circulate face cw and next does the same as
circulate face ccw. The longer names are indicative of the geometric opera-
tion while prev and next highlight the connection with the data structure. It is

8

important to note that all of the functions which operate on Walker instances re-
turn a new Walker and do not alter the state of the current walker. Thus to walk
around a face, we use w = w.next() as opposed to just w.next() in the for
loop above. That might seem inconvenient but it is more flexible since we can ob-
tain, say, a nearby vertex just by concatenating some traversal functions. For instance
w.next().opp().next().vertex() returns an ID to a vertex nearby – without
changing w. The sequence w.next().opp().next() creates three anonymous
walkers. If, on the other hand, the functions used for walking updated the state of w,
we would have needed to first make a named copy of w before updating its state, so
that we could get back to the original state.

Walker can be used to circulate around both faces and vertices. Below, we use
vertex circulation to compute the average of the neighbors of a vertex

Vec3d p(0);
VertexID v = m.vertices();
Walker w = m.walker(v)
for(;!w.full_circle(); w = w.circulate_vertex_ccw()){
p += m.pos(w.vertex());

p /= w.no_steps();

Again, the full circle() function tests whether the walker has returned to
the original halfedge whence it was created. We can also call no steps() which
returns the number of steps taken. In this regard, a step of vertex circulation is
considered atomic - even though w.circulate vertex ccw() is the same as
w.prev().opp().

From a walker we can easily obtain any of the mesh entities that the halfedge it
refers to are incident upon. For instance vertex() returns the VertexID of the
vertex which the halfedge points to, face() gives us the FaceID of the incident
face and halfedge() simply returns the HalfEdgeID. There is one more option
for circulation. The following code does precisely the same as the code above, i.e. it
computes the average of the neighboring vertices.

Vec3d p(0);
int n = circulate_vertex_ccw(m, v,

[&](VertexID v){ p += m.pos(v); });
return p / n;

Here the function circulate vertex ccw takes three arguments. The
Manifold, m, and the vertex, v, around which we circulate, and, finally, a func-
tion that accepts a VertexID. This function gets called for every vertex adjacent to
v. In this example, the function is given as a so called lambda function. This allows
us to write things compactly and to have the body of the function where it is needed.
We could also have passed a function which accepts a FaceID or a HalfEdgeID
or a Walker. Thus, we can visit incident faces and edges during circulation if that is
what we need, and if we need go get some entity other than adjacent vertices, edges, or
faces, we can use the Walker option which is the most generic.

To summarize there are three datatypes that we use to refer to mesh entitites.

• IDs VertexID, HalfEdgeID, and FaceID are simply indices. These types
are what we use when calling functions that take arguments which refer to mesh
entities.

9

• ID iterators VertexIDIterator, HalfEdgeIDIterator, and
FaceIDIterator as their names imply can be used to iterate over the entities
of a mesh. As such they reflect how the mesh is stored in memory. Dereferencing
an ID iterator will give an ID.

• Walker is used to walk from halfedge to halfedge on the mesh. It utilizes
the references stored in halfedges to other halfedges in order to facilitate this
traversal. Again, we can obtain an ID from a walker.

It might seem tiresome that you have to deal with three different methods for referring
to mesh entities, but they do very different jobs. The IDs are simply indices (wrapped in
a class) referring to mesh elements. The iterators combine this indices with a reference
to the actual data structures. The walker contains functions that allow us to move from
halfedge to halfedge and additionally keeps track of the starting point and number of
steps taken.

We could have combined two or all three of these concepts, but would have led to
rather bloated datatypes.

3.2 Attributes
Given a VertexID, v, and a Manifold, m, we can obtain the geometric position
of the vertex with the method call m.pos(v). If is fairly important to note that a
reference to the position is returned. Thus, we can assign the position of a vertex:

Vec3d p;
VertexID v;
// ...
m.pos(v) = p;

Geometric position is in fact the only attribute that is stored for a vertex. That might
seem strange since we would very often like to associate any number of attributes with
mesh entities. For instance, we might need to associate normals, colors, curvature
tensors, counters, etc. with vertices, faces, or even edges.

Unfortunately, what precise attributes we need depends greatly on the precise appli-
cation. To resolve this issue, we have introduces three attribute vector class templates
which allow the user to create his own attribute vectors:

VertexAttributeVector<T> vertex_attrib_vector;
FaceAttributeVector<T> face_ttrib_vector;
HalfEdgeAttributeVector<T> halfedge_attrib_vector;

where T is a typename. Attribute vectors are indexed with indices. Thus, a
VertexAttributeVector is indexed with a VertexID and likewise for the
other types. To give a simple example of how this is used consider smoothing a mesh.
The simplest way of smoothing is to replace the vertex with the average of its neigh-
bors. However, if we copy the average value back before the average value for some
neighbor has been computed, then we clearly use one average to compute another av-
erage and thereby introduce an unfortunate dependence on the ordering of the vertices.
Consequently, we need to first compute all of the averages and then update the original
vertices. The code looks as follows:

void smooth(Manifold& m, float t)

10

{
VertexAttributeVector<Vec3f> pos(m.total_vertices());
for(VertexID v : m.vertices())
{

if(!boundary(m, v))
{

Vec3f avg_pos(0);
Walker w = m.walker(v)
for(; !w.full_circle(); w = w.circulate_vertex_cw())

avg_pos += m.pos(w.vertex());
pos[v] = avg_pos / w.no_steps();

}
}

for(VertexID v : m.vertices())
{

if(!boundary(m, v))
m.pos(v) = pos[v];

}
}

In the smoothing example the VertexAttributeVector containing the new
positions is initialized to a size equal to the actual number of vertices. That is not
strictly necessary since the attribute vectors automatically resize if the index stored
in the ID is out of bounds. Thus, we never explicitly need to increase the size of an
attribute vector. What if there are suddenly fewer vertices? In that case, we can clean
up the attribute vector. However, we also need to clean up the manifold. The procedure
looks as follows:

VertexAttributeVector<T> vertex_attrib_vector;
Manifold m;
//

IDRemap remap;
m.cleanup(remap);
vertex_attrib_vector.cleanup(remap);

Calling cleanup on the Manifold removes unused mesh entities, resizes, and re-
size the vectors containing these entities. When we subsequently call cleanup on the
attribute vector, the same reorganization is carried out on the attribute vector keeping
it in sync. Strictly speaking cleanup is rarely needed, but it removes unused memory
which can be a performance advantage.

3.3 Extended Example: Edge Flipping
The following example demonstrates how to create a Manifold and add polygons (in
this case triangles) and finally how to flip edges of a manifold. First, let us define some
vertices

vector<Vec3f> vertices(3);
vertices[0] = p1;

11

vertices[1] = p2;
vertices[2] = p3;

and then a vector of faces. The faces vector contains the number of vertices of each
face in the mesh we want tor produce. Initially, we want to make a mesh with just one
single triangle, so we produce a vector of one element and set that element to 3.

vector<int> faces(1);
faces[0] = 3;

Next, we need the index vector. This vector is a long list of indices to vertices. For each
face, we store the indices to its vertices in this vector. Since we just have a triangle, we
store three vertices in the vector.

vector<int> indices(3);
indices[0]=0;
indices[1]=1;
indices[2]=2;

So, if we had had two triangles, we would have stored six indices. Finally, we call
build with the indexed face set data, we have compiled.

m.build(3, reinterpret_cast<float*>(&vertices[0]),1,
&faces[0], &indices[0]);

The result of the above is a mesh with a single triangle. Next, we try to split an edge. We
grab the first halfedge and split it: Now we have two triangles. Splitting the halfedge
changes the containing triangle to a quadrilateral, and we call triangulate to divide it
into two triangls again.

HalfEdgeID h = m.halfedge();
m.split_edge(h);
triangulate_face_by_edge_split(m, m.walker(h).face());

Now, we obtain an iterator to the first of our (two) triangles.

FaceID f1 = m.faces();

We create a vertex, v, at centre of f1 and insert it in that face:

m.split_face_by_vertex(f1);

The code below, marks one of a pair of halfedges (with the value 1).

HalfEdgeAttributeVector<int> touched;

//

for(HalfEdgeID h : m.halfedges())
{

if(m.walker(h).opp().halfedge() < h)
touched[h] =0;

else
touched[h] =1;

}

12

Next, we set the flipper variable to point to the first of these halfedges:

flipper = m.halfedges_begin();

The long piece of code below examines a halfedge pointed to by flipper, and if it
is not a boundary halfedge it tries to flip it. Then it increments the flipper variable
until it lands on a halfedge marked with 1. If flipper reaches the end of the list of
halfedges, we start over.

if(!boundary(m, *flipper))
if(precond_flip_edge(m,*flipper))

m.flip_edge(*flipper);
do

{
++flipper;
if(flipper==m.halfedges_end())

{
flipper = m.halfedges_begin();
break;

}
}

while(touched[*flipper] == 0);

This example may not serve much of a purpose but illustrates how we can iterate over
all edges and flip them. From this example, we are fairly close to Delaunay triangula-
tion.

3.4 HMesh tools
The HMesh directory contains not only the basic data structure and functionality for
traversing a mesh. There are also tools for mesh optimization through energy min-
imization, several algorithms for mesh smoothing, a number of tools for cleaning
meshes as well as tools for simplifying meshes.

4 GLGraphics
GLGraphics contains a set of tools needed for visualization of geometrical objects.
In particular, this namespace contains mesh rendering facilities, and in the following, a
very simple example is given. This section is basically a walk through of the simplest
GEL program that draws a mesh. Apart from GEL, we also use OpenGL and that
requires a toolkit for connecting with the window system. With GEL programs, one
generally uses GLUT, and this example is not an exception.

For starters, we need to include some files mostly from GLGraphics but also the
header file for the mesh load function of HMesh and the GLEW header. Why incude
glew.h rather than just gl.h? Well, HMesh/draw.h contains some draw functions
which rely on shaders, and since gl.h is normally not up to date, it makes sense
to use glew.h instead of gl.h even though it inflicts a dependency. We include
GLGraphics/gel glut.h rather than the normal glut.h. That is because the
GEL version works the same on Windows, OSX, Linux and probably other platforms.

13

We also open the namespaces we will need and declare two globals: The view
controller view ctrl and the mesh mani. The view controller class is rather com-
plex. It more or less insulates you from having to deal directly with the projections and
transformations of OpenGL: It sets up a perspective projection and also the modelview
transformation needed to view the object. From a user interface perspective, it defines
a virtual trackball which allows you to rotate the object.

#include <GL/glew.h>
#include <GLGraphics/gel_glut.h>
#include <GLGraphics/draw.h>
#include <GLGraphics/GLViewController.h>
#include <HMesh/load.h>

using namespace std;
using namespace HMesh;
using namespace CGLA;
using namespace GLGraphics;

GLViewController* view_ctrl;
Manifold mani;

Below is the display function which is called from the GLUT event loop whenever
an event that requires redrawing is received. All drawing takes place inside this func-
tion. In this case, it is simple since all we need to do is clear the screen (and depth
buffer), set up a new modelview transformation with the view controller and then call
the draw function followed by a swap of buffers.

The draw function sends the polygons to the graphics card. It is very inefficient
and uses the fixed function pipeline. At a minimum one should draw the polygons to a
display list, but for a simple example, this works. The buffer swap is because we use
double buffering; in other words, we draw to the back buffer.

void display() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
view_ctrl->set_gl_modelview();
draw(mani);
glutSwapBuffers();

}

The mouse callback below is called when a mouse event has occurred. This is where
user input for the virtual trackball is registered. We check whether a mouse is pressed
or released. If it is pressed, we detect which button and then “grab” the virtual trackball
in order to rotate, zoom, or pan depending on which button is pressed. If the button is
released, we inform the view controller of this.

void mouse(int button, int state, int x, int y) {
Vec2i pos(x,y);
if (state==GLUT_DOWN)
{

if (button==GLUT_LEFT_BUTTON)
view_ctrl->grab_ball(ROTATE_ACTION,pos);

else if (button==GLUT_MIDDLE_BUTTON)

14

view_ctrl->grab_ball(ZOOM_ACTION,pos);
else if (button==GLUT_RIGHT_BUTTON)

view_ctrl->grab_ball(PAN_ACTION,pos);
}
else if (state==GLUT_UP)

view_ctrl->release_ball();
}

If the mouse moves with a button depressed, we register motion in the function below.
The new mouse position is sent to the view controller which then, e.g., rotates the
trackball accordingly. Note that this function ends by posting a redisplay event, i.e.
informs GLUT that display should be called at the earliest convenience.

void motion(int x, int y) {
Vec2i pos(x,y);
view_ctrl->roll_ball(Vec2i(x,y));
glutPostRedisplay();

}

Finally, in the main function, we first load the mesh and then setup glut. This mostly
involves defining the callback function just described. We set up the view controller
passing it window dimensions and the size and position of the bounding sphere of the
object just loaded. Finally, we do some minimal OpenGL set up: Essentially clearing
the depth buffer and enabling lights. Finally, we pass control to the GLUT event loop.

int main(int argc, char** argv) {
string file = "bunny-little.x3d";
load(file, mani);

glutInitDisplayMode(GLUT_RGBA|GLUT_DOUBLE|GLUT_DEPTH);
glutInitWindowSize(800, 800);
glutInit(&argc, argv);
glutCreateWindow("GEL Example Program");
glutDisplayFunc(display);
glutMouseFunc(mouse);
glutMotionFunc(motion);

Vec3f bsphere_center(0,0,0);
float bsphere_radius = 3;
mani.get_bsphere(bsphere_center,bsphere_radius);
view_ctrl = new GLViewController(800,800,

bsphere_center,bsphere_radius*2);

glClearColor(0.0f, 0.0f, .5f, 0.f);
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

glutMainLoop();
}

Note that the mesh can be either an X3D, OBJ, PLY, or OFF files. However, only
the geometry is loaded not the textures. In the case of OBJ files, we also convert all

15

polygons to triangles, because the TriMesh loader (see the geometry class) is in fact
used.

Apart from the drawing functions and the viewcontroller, GLGraphics also contains
other useful pieces: A few functions which greatly simplify shader loading and SOIL.
SOIL is a small library for loading images. It is designed for OpenGL and makes it
easy to e.g. save screen shots or load an image for use as a texture. While the need for
image loading is fairly obvious, it might be more difficult to see the need for shader
loading functions. However, it is a little tricky to make shader programs in C++ using
GLSL but the problems are almost all silly little things. For instance, how do you
robustly read from a text file? How do you compile a shader and check for errors? In
OpenGL What is the difference between a GLSL program and a shader anyway?

The short answer to the last question is this: A ”shader” can be either a vertex
shader, a geometry shader (in OpenGL 2.0) or a fragment shader. A ”program” is a
linked combination of these three types of shaders. Note that you don’t have to have a
geometry shader.

These functions attempt to obviate the need for an answer to the first two questions
by providing an API for loading and compiling shaders and checking for errors. How-
ever, I don’t include functions for creating the program, attaching shaders and linking.
Why not? Because the need for flexibility means that the API would be just as complex
as just using the OpenGL functions directly! However, loading shaders and checking
for errors in compiled shaders is different. It makes sense to wrap that. It also makes
sense to wrap the error checking for programs that are linked, so there is a function for
that too.

Since shader loading and error check sandwhich the two calls needed for com-
pilation, the most important function in this API, create glsl shader, loads a
shader, compiles it, checks for errors and returns the shader handle. There is also a
version which creates a shader from a string.

There is some code below to illustrate usage.

GLuint vs = create_glsl_shader(GL_VERTEX_SHADER,
shader_path, "tri.vert");

GLuint gs = create_glsl_shader(GL_GEOMETRY_SHADER_EXT,
shader_path, "tri.geom");

GLuint fs = create_glsl_shader(GL_FRAGMENT_SHADER,
shader_path, "tri.frag");

prog_P0 = glCreateProgram();

if(vs) glAttachShader(prog_P0, vs);
if(gs) glAttachShader(prog_P0, gs);
if(fs) glAttachShader(prog_P0, fs);

// Specify input and output for the geometry shader.
// Note that this must be done before linking the program.
glProgramParameteriEXT(prog_P0,GL_GEOMETRY_INPUT_TYPE_EXT,

GL_TRIANGLES);
glProgramParameteriEXT(prog_P0,GL_GEOMETRY_VERTICES_OUT_EXT,3);
glProgramParameteriEXT(prog_P0,GL_GEOMETRY_OUTPUT_TYPE_EXT,

GL_TRIANGLE_STRIP);

16

// Link the program object and print out the info log
glLinkProgram(prog_P0);
print_glsl_program_log(prog_P0);

// Install program object as part of current state
glUseProgram(prog_P0);

// Set the value of a uniform
glUniform2f(glGetUniformLocation(prog_P0,"WIN_SCALE"),

win_size_x/2.0, win_size_y/2.0);

5 LinAlg
Sometimes the simple 2,3,4 dimensional vectors from CGLA just don’t cut it. We often
need to solve large linear systems. The LinAlg namespace contains some vector and
matrix classes and an interface to Lapack. This provides fairly easy way to do many
numerical computations.

In the example below, we find coefficients for ax2 + by2 + cxy + dx + ey + f
such that the surface contains six specific points. The coefficients are found by solving
the linear system Ax = b where the rows of the A matrix contains x2 y2 xy x y 1
computed from the xy positions of each point, x contains the unknown coefficients,
and b on the right hand side contains the z values of the six points. Using LinAlg, we
implement it as follows:

CMatrix A(6,6);
CVector b(6);

for(int i=0;i<6;++i)
{

A.set(i,0,pts[i][0]*pts[i][0]);
A.set(i,1,pts[i][1]*pts[i][1]);
A.set(i,2,pts[i][0]*pts[i][1]);
A.set(i,3,pts[i][0]);
A.set(i,4,pts[i][1]);
A.set(i,5,1);
b[i] = pts[i][2];

}
CVector x;
LinearSolve(A,b,x);

While this example shows only the function for solving a system which should have
a solution, there are also functions for solving overdetermined systems in the least
square sense and finding the minimum norm solution to underdetermined systems using
singular value decomposition. There is also a function for finding eigenvalues and
eigenvectors of symmetric matrices and more.

6 Geometry
The Geometry namespace contains many different classes and functions. Roughly, we
can divide the contents into

17

• Spatial data structures such as kd tress, bounding box hierarchies, and BSP trees.

• A Triangle mesh data structure called TriMesh. TriMesh is different from HMesh
in that it only contains triangles. It is much more an API for real time rendering
which also facilitates material properties and not just geometry.

• Classes and functions for dealing with volume data. HGrid and RGrid are, re-
spectively, a class for hierarchically stored voxel grids (sparse grids) and regular
grids. There is a number of functions for traversing voxel grids systematically
and along rays.

• Surprisingly, you will also find my C++ port of Jules Bloomenthals isosurface
polygonizer and an implementation of Luiz Velho’s parametric surface tiler in
this namespace.

One of the most frequently used tools in Geometry is the kD tree class which merits
an example. In the code below, we create a kD tree which had Vec3fs as keys and
integers as data. Note that since the kD tree is a template, we could use any other type
as both key and data, however, only CGLA vectors have been tested as key types, but
there are no restrictions on data types.

KDTree<Vec3f,int> tree;
for(int i=0;i<N;++i)

{
Vec3f p0;
make_ran_point(p0);
tree.insert(p0, i);

}
tree.build();

Note also, that before we use the tree it needs to be built. This is because the internal
representation is a balanced binary heap which it is easier to build at the end rather than
maintain during insertion of new points. To look for the points near a given point, we
can call

Vec3f p0;
// ...
std::vector<Vec3f> keys;
std::vector<int> vals;
float radius = 1.95f;
int N = tree.in_sphere(p0, radius , keys, vals);

This will find all points in a radius of 1.95 units from p0. The keys and values are
stored in keys and vals when the functions returns. The return value of the function
is the number of points found within the radius.

Sometimes, we simply want the point closest to a given point p0 which is done
using tree.closest point(p0, d, pos, x) where the two first arguments
indicate the point and the maximum search radius. The two last arguments are set to
the key and data of the point found to be closest to p0. The function returns true if a
closest point was found.

18

7 Util
The Util namespace contains a rather mixed bag of utilities many of which are quite
useful and very diverse.

The XML parser for instance is written from scratch and the basis for our X3D loader
although it will load any XML file.

Grid2D is often useful when we want to deal with e.g. simulation on a 2D grid.

The Timer class is nearly indispensable when we need to time something, and it is
very easy to use.

ArgExtracter is a class for getting the command line arguments to a program.

There is more - for instance a resource manager template, some string utility templates
and a hash table implementation.

Arguably, it would be more pretty if these pieces had been more thematically linked,
but many are used a lot, and it seemed reasonable to have somewhere to stick various
functions and classes that did not naturally belong elsewhere.

8 Authors
Andreas Bærentzen created the library and has written most of the code not contributed
by the people below.

Jeppe Revall Frisvad has contributed greatly to the CGLA part of GEL and elsewhere.

Christian Thode Larsen rewrote the classes in HMesh. They are much nicer for it.

Anders Wang Kristensen has been a great help in the process of reworking HMesh and
also contributed some code for an OpenGL console.

Henrik Aanæs provided the original LinAlg package, which is a set of simple but very
useful Lapack bindings.

Rasmus Paulsen, Bjarke Jakobsen, Marek Misztal helped with structure and compila-
tion on various platforms with testing and ideas.

9 License
You are allowed to use GEL for academic or commercial purposes. In particular, you
are welcome to give GEL to students as a basis for academic work or to use it in your
own applications.

Regarding the use of GEL in other libraries. GEL does exist in slightly different ver-
sions, since we have created pared down packages for various courses. We would like
to retain the prerogative of repackaging. If you would like to use GEL in its entirety in
another library that is fine, but we do not allow you not to take bits and pieces and put
them into a different library.

If you use GEL, we would be grateful for due credit.

Finally, we follow the MIT license as regards warranty:

19

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

If anything is unclear, please send an email to jab@imm.dtu.dk.

10 Open Source Code used in GEL
Source code from other projects have been incorporated in GEL.

From Graphics Gems, two functions for inverting matrices and Jules Bloomenthal’s
polygonizer which I reworked from C to C++. This is allowed according to the license.

rply by Diego Nehab, Princeton University, and the Simple OpenGL Image Loader by
Jonathan Dummer. These are MIT licensed and our use is congruent with that license.

The OpenGL Extension Wrangler Library is also included and appears to have a license
identical to the MIT license. As mentioned, our use is congruent with that license.

The incorporated code amounts to only a small fraction of the GEL source code.

20

	Introduction
	Overview of GEL

	CGLA
	Naming conventions
	How to use CGLA
	CGLA: Examples of Usage

	HMesh
	Walker
	Attributes
	Extended Example: Edge Flipping
	HMesh tools

	GLGraphics
	LinAlg
	Geometry
	Util
	Authors
	License
	Open Source Code used in GEL

