Subversion Repositories gelsvn

Rev

Rev 595 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
595 jab 1
/* ----------------------------------------------------------------------- *
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
3
 * Copyright (C) the authors and DTU Informatics
4
 * For license and list of authors, see ../../doc/intro.pdf
5
 * @brief Abstract 3D floating point vector class
6
 * ----------------------------------------------------------------------- */
7
 
8
/** @file ArithVec3Float.h
9
 * @brief Abstract 3D floating point vector class
10
 */
11
 
2 bj 12
#ifndef __CGLA__ARITHVEC3FLOAT_H__
13
#define __CGLA__ARITHVEC3FLOAT_H__
14
 
15
#include "ArithVecFloat.h"
16
 
17
namespace CGLA {
18
 
19
	template<class T, class V>
20
	class ArithVec3Float: public ArithVecFloat<T,V,3>
21
	{
22
	public:
23
 
24
		/// Construct a 3D float vector.
25
		ArithVec3Float(T a, T b, T c): ArithVecFloat<T,V,3>(a,b,c) {}
26
 
27
		/// Construct a 3D float vector.
28
		ArithVec3Float() {}
29
 
30
		/** Get the vector in spherical coordinates.
31
				The first argument (theta) is inclination from the vertical axis.
32
				The second argument (phi) is the angle of rotation about the vertical 
33
				axis. The third argument (r) is the length of the vector. */
34
		void get_spherical( T&, T&, T& ) const;
35
 
36
		/** Assign the vector in spherical coordinates.
37
				The first argument (theta) is inclination from the vertical axis.
38
				The second argument (phi) is the angle of rotation about the vertical 
39
				axis. The third argument (r) is the length of the vector. */
40
		void set_spherical( T, T, T);
41
 
42
	};
43
 
44
	/// Returns cross product of arguments
45
	template<class T, class V>
46
	inline V cross( const ArithVec3Float<T,V>& x, 
47
									const ArithVec3Float<T,V>& y ) 
48
	{
49
		return V( x[1] * y[2] - x[2] * y[1], 
50
							x[2] * y[0] - x[0] * y[2], 
51
							x[0] * y[1] - x[1] * y[0] );
52
	}
53
 
54
	/** Compute basis of orthogonal plane.
569 jrf 55
			Given a vector compute two vectors that are orthogonal to it and 
2 bj 56
			to each other. */
57
	template<class T, class V>
58
	void orthogonal(const ArithVec3Float<T,V>&,
59
									ArithVec3Float<T,V>&,
60
									ArithVec3Float<T,V>&);
61
 
569 jrf 62
  /** Build an orthonormal basis from a 3d unit vector [Frisvad 2012].
63
      Given a unit vector compute two unit vectors that are orthogonal to
64
      it and to each other. */
65
  template<class T, class V>
66
  void onb(const ArithVec3Float<T,V>&,
67
           ArithVec3Float<T,V>&,
68
           ArithVec3Float<T,V>&);
2 bj 69
}
70
 
71
#endif
72