595 |
jab |
1 |
/* ----------------------------------------------------------------------- *
|
|
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
|
|
3 |
* Copyright (C) the authors and DTU Informatics
|
|
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
|
|
5 |
* @brief Abstract 3D floating point vector class
|
|
|
6 |
* ----------------------------------------------------------------------- */
|
|
|
7 |
|
|
|
8 |
/** @file ArithVec3Float.h
|
|
|
9 |
* @brief Abstract 3D floating point vector class
|
|
|
10 |
*/
|
|
|
11 |
|
2 |
bj |
12 |
#ifndef __CGLA__ARITHVEC3FLOAT_H__
|
|
|
13 |
#define __CGLA__ARITHVEC3FLOAT_H__
|
|
|
14 |
|
|
|
15 |
#include "ArithVecFloat.h"
|
|
|
16 |
|
|
|
17 |
namespace CGLA {
|
|
|
18 |
|
|
|
19 |
template<class T, class V>
|
|
|
20 |
class ArithVec3Float: public ArithVecFloat<T,V,3>
|
|
|
21 |
{
|
|
|
22 |
public:
|
|
|
23 |
|
|
|
24 |
/// Construct a 3D float vector.
|
|
|
25 |
ArithVec3Float(T a, T b, T c): ArithVecFloat<T,V,3>(a,b,c) {}
|
|
|
26 |
|
|
|
27 |
/// Construct a 3D float vector.
|
|
|
28 |
ArithVec3Float() {}
|
|
|
29 |
|
|
|
30 |
/** Get the vector in spherical coordinates.
|
|
|
31 |
The first argument (theta) is inclination from the vertical axis.
|
|
|
32 |
The second argument (phi) is the angle of rotation about the vertical
|
|
|
33 |
axis. The third argument (r) is the length of the vector. */
|
|
|
34 |
void get_spherical( T&, T&, T& ) const;
|
|
|
35 |
|
|
|
36 |
/** Assign the vector in spherical coordinates.
|
|
|
37 |
The first argument (theta) is inclination from the vertical axis.
|
|
|
38 |
The second argument (phi) is the angle of rotation about the vertical
|
|
|
39 |
axis. The third argument (r) is the length of the vector. */
|
|
|
40 |
void set_spherical( T, T, T);
|
|
|
41 |
|
|
|
42 |
};
|
|
|
43 |
|
|
|
44 |
/// Returns cross product of arguments
|
|
|
45 |
template<class T, class V>
|
|
|
46 |
inline V cross( const ArithVec3Float<T,V>& x,
|
|
|
47 |
const ArithVec3Float<T,V>& y )
|
|
|
48 |
{
|
|
|
49 |
return V( x[1] * y[2] - x[2] * y[1],
|
|
|
50 |
x[2] * y[0] - x[0] * y[2],
|
|
|
51 |
x[0] * y[1] - x[1] * y[0] );
|
|
|
52 |
}
|
|
|
53 |
|
|
|
54 |
/** Compute basis of orthogonal plane.
|
569 |
jrf |
55 |
Given a vector compute two vectors that are orthogonal to it and
|
2 |
bj |
56 |
to each other. */
|
|
|
57 |
template<class T, class V>
|
|
|
58 |
void orthogonal(const ArithVec3Float<T,V>&,
|
|
|
59 |
ArithVec3Float<T,V>&,
|
|
|
60 |
ArithVec3Float<T,V>&);
|
|
|
61 |
|
569 |
jrf |
62 |
/** Build an orthonormal basis from a 3d unit vector [Frisvad 2012].
|
|
|
63 |
Given a unit vector compute two unit vectors that are orthogonal to
|
|
|
64 |
it and to each other. */
|
|
|
65 |
template<class T, class V>
|
|
|
66 |
void onb(const ArithVec3Float<T,V>&,
|
|
|
67 |
ArithVec3Float<T,V>&,
|
|
|
68 |
ArithVec3Float<T,V>&);
|
2 |
bj |
69 |
}
|
|
|
70 |
|
|
|
71 |
#endif
|
|
|
72 |
|