Subversion Repositories gelsvn

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
349 awk 1
#include "CGLA/Vec3d.h"
2
#include "Geometry/TriMesh.h"
3
 
4
#include "BSPTree.h"
5
 
6
using namespace std;
7
using namespace CGLA;
8
 
9
namespace Geometry
10
{
11
  int BSPTree::node_calls;
12
  int BSPTree::tri_calls;
13
 
14
  void create_tri_accel(Vec3f A, Vec3f B, Vec3f C, TriAccel &tri_accel) 
15
  {
16
    Vec3f N = normalize(cross(B-A, C-A));
17
    // Find projection dir
18
    int k,u,v;
19
    if (fabs(N[0]) > fabs(N[1]))
20
      if (fabs(N[0]) > fabs(N[2])) 
21
    k = 0; /* X */ 
22
      else 
23
    k=2;   /* Z */
24
    else
25
      if (fabs(N[1]) > fabs(N[2])) 
26
    k = 1; /* Y */ 
27
      else 
28
    k=2;   /* Z */
29
 
30
    u = (k+1)% 3; 
31
    v = (k+2)% 3;
32
 
33
    Vec3f b = C - A;
34
    Vec3f c = B - A;
35
 
36
    double div = (b[u]*c[v]-b[v]*c[u]);
37
 
38
    tri_accel.n_u = N[u]/N[k];
39
    tri_accel.n_v = N[v]/N[k];
40
    tri_accel.n_d = dot(A, N/N[k]);
41
    tri_accel.k = k;
42
 
43
    tri_accel.b_nu = -b[v]/div;
44
    tri_accel.b_nv = b[u]/div;
45
    tri_accel.b_d = (b[v]*A[u]-b[u]*A[v])/div;
46
 
47
    tri_accel.c_nu = c[v]/div;
48
    tri_accel.c_nv = -c[u]/div;
49
    tri_accel.c_d = (c[u]*A[v]-c[v]*A[u])/div;
50
  }
51
 
52
  // Most of this file is a direct copy from Henrik's notes
53
  BSPTree::BSPTree() 
54
  {
55
    root=0;
56
    b_is_build = false;
57
  }
58
 
59
  BSPTree::~BSPTree() 
60
  {
61
    clear();        
62
  }
63
 
64
  void BSPTree::clear() 
65
  {
66
    if (root!=0) 
67
    {
68
      delete_node(root);
69
      root=0;
70
      b_is_build=false;
71
    }
72
    isecttris.clear();
73
    all_objects.clear();
74
    all_triaccel.clear();
75
  }
76
 
77
  void BSPTree::delete_node(BSPNode *node) 
78
  {
79
    if (node->left!=0)
80
      delete_node(node->left);
81
    if (node->right!=0)
82
      delete_node(node->right);
83
    delete node;
84
  }
85
 
86
  void BSPTree::subdivide_node(BSPNode &node, BBox &bbox, 
87
                   unsigned int level, 
88
                   vector<ISectTri*>& objects, 
89
                   vector<TriAccel*>& tri_objects) 
90
  {
91
    const int TESTS = 2;
92
 
93
    if (objects.size()<=max_objects || level==max_level) 
94
    {
95
      node.axis_leaf = 4; // Means that this is a leaf
96
      node.plane = 0;
97
      node.left = 0;
98
      node.right = 0;
99
      node.id = all_objects.size();
100
      node.count = objects.size();
101
 
102
      for(unsigned int i = 0; i < objects.size(); ++i) 
103
      {
104
    all_objects.push_back(objects[i]);
105
    all_triaccel.push_back(tri_objects[i]);
106
      }  
107
    } 
108
    else 
109
    {
110
      bool right_zero=false;
111
      bool left_zero=false;
112
      unsigned int i;
113
      BSPNode* left_node  = new BSPNode();
114
      BSPNode* right_node = new BSPNode();
115
      vector<ISectTri*> left_objects;
116
      vector<ISectTri*> right_objects;
117
      vector<TriAccel*> tri_left_objects;
118
      vector<TriAccel*> tri_right_objects;
119
 
120
      node.left = left_node;
121
      node.right = right_node;
122
 
123
      int new_axis=-1;
124
      double min_cost=CGLA::BIG;
125
      int new_pos = -1;      
126
 
127
      for(i=0;i<3;i++) 
128
      {
129
    for(int k=1;k<TESTS;k++) 
130
    {
131
      BBox left_bbox = bbox;
132
      BBox right_bbox = bbox;
133
 
134
      double center = (bbox.max_corner[i]- bbox.min_corner[i])*(double)k/(double)TESTS + bbox.min_corner[i];
135
      node.plane = center;
136
 
137
      left_bbox.max_corner[i] = center; 
138
      right_bbox.min_corner[i] = center; 
139
 
140
      // Try putting the triangles in the left and right boxes
141
      int left_count = 0;
142
      int right_count = 0;
143
      for(unsigned int j=0;j<objects.size();j++) 
144
      {
145
        ISectTri* tri = objects[j];
146
        left_count += left_bbox.intersect_triangle(*tri);
147
        right_count += right_bbox.intersect_triangle(*tri);
148
      }
149
 
150
      //double len = bbox.max_corner[i] - bbox.min_corner[i];
151
      double cost = left_count*left_bbox.area() + right_count*right_bbox.area(); // - len*len;
152
      if(cost < min_cost) 
153
      {
154
        min_cost = cost;
155
        new_axis = i;
156
        new_pos = k;
157
        right_zero = (right_count==0);
158
        left_zero = (left_count==0);
159
      }
160
    }
161
      }
162
      node.axis_leaf = new_axis;
163
      left_node->axis_leaf = static_cast<unsigned char>(-1); 
164
      right_node->axis_leaf = static_cast<unsigned char>(-1); 
165
 
166
      // Now chose the right splitting plane
167
      BBox left_bbox = bbox;
168
      BBox right_bbox = bbox;
169
 
170
      double size = bbox.max_corner[node.axis_leaf]- bbox.min_corner[node.axis_leaf];
171
      double center = size*(double)new_pos/(double)TESTS + bbox.min_corner[node.axis_leaf];
172
      double diff = f_eps < size/8.0 ? f_eps : size/8.0;
173
 
174
      if (left_zero) 
175
      {
176
    // Find min position of all triangle vertices and place the center there
177
    center = bbox.max_corner[node.axis_leaf];
178
    for(unsigned int j=0;j<objects.size();j++) 
179
    {
180
      ISectTri* tri = objects[j];
181
      if (tri->point0[node.axis_leaf]<center)
182
        center=tri->point0[node.axis_leaf];
183
      if (tri->point1[node.axis_leaf]<center)
184
        center=tri->point1[node.axis_leaf];
185
      if (tri->point2[node.axis_leaf]<center)
186
        center=tri->point2[node.axis_leaf];
187
    }
188
    center -= diff;
189
      }
190
      if (right_zero) 
191
      {
192
    // Find max position of all triangle vertices and place the center there
193
    center = bbox.min_corner[node.axis_leaf];
194
    for(unsigned int j=0;j<objects.size();j++) 
195
    {
196
      ISectTri* tri = objects[j];
197
      if (tri->point0[node.axis_leaf]>center)
198
        center=tri->point0[node.axis_leaf];
199
      if (tri->point1[node.axis_leaf]>center)
200
        center=tri->point1[node.axis_leaf];
201
      if (tri->point2[node.axis_leaf]>center)
202
        center=tri->point2[node.axis_leaf];
203
    }
204
    center += diff;
205
      }
206
 
207
      node.plane = center;
208
      left_bbox.max_corner[node.axis_leaf] = center; 
209
      right_bbox.min_corner[node.axis_leaf] = center;  
210
 
211
      // Now put the triangles in the right and left node
212
      for(i=0;i<objects.size();i++) 
213
      {
214
    ISectTri* tri = objects[i];
215
    TriAccel *tri_accel = tri_objects[i];
216
    if (left_bbox.intersect_triangle(*tri)) 
217
    {
218
      left_objects.push_back(tri);
219
      tri_left_objects.push_back(tri_accel);
220
    }
221
    if (right_bbox.intersect_triangle(*tri)) 
222
    {
223
      right_objects.push_back(tri);
224
      tri_right_objects.push_back(tri_accel);
225
    }
226
      }
227
    //if (left_zero||right_zero)
228
    //  cout << left_objects.size() << "," << right_objects.size() << "," << level << endl;
229
 
230
      objects.clear();
231
      subdivide_node(*left_node , left_bbox , level+1, left_objects, tri_left_objects);
232
      subdivide_node(*right_node, right_bbox, level+1, right_objects, tri_right_objects);
233
    }
234
  }
235
 
236
  void BSPTree::init() 
237
  {
238
    root = new BSPNode();
239
    bbox.compute_bbox(isecttris);
240
    bbox.min_corner-=Vec3f(1.0);
241
    bbox.max_corner+=Vec3f(1.0);
242
  }
243
 
244
  void BSPTree::init(vector<const TriMesh*>& _trimesh, 
245
             vector<Mat4x4f>& _transforms, 
246
             int _max_objects, int _max_level) 
247
  {
248
    trimesh = _trimesh;
249
    transforms = _transforms;
250
    for(unsigned int i=0;i<trimesh.size();i++) 
251
    {
252
      const TriMesh *mesh = trimesh[i];
253
      // Loop through all triangles and add them to intersection structure
254
      for(int j=0;j<mesh->geometry.no_faces();j++) 
255
      {
256
    Vec3i face = mesh->geometry.face(j);
257
    ISectTri new_tri;
258
    new_tri.point0 = transforms[i].mul_3D_point(mesh->geometry.vertex(face[0]));
259
    new_tri.point1 = transforms[i].mul_3D_point(mesh->geometry.vertex(face[1]));
260
    new_tri.point2 = transforms[i].mul_3D_point(mesh->geometry.vertex(face[2]));
261
    new_tri.edge0 = new_tri.point1 - new_tri.point0;
262
    new_tri.edge1 = new_tri.point2 - new_tri.point0;
263
    new_tri.mesh_id = i;
264
    new_tri.tri_id = j;
265
    isecttris.push_back(new_tri);
266
    TriAccel ta;
267
    create_tri_accel(new_tri.point0, new_tri.point1, new_tri.point2, ta);
268
    ta.mesh_id = i;
269
    ta.tri_id = j;
270
    triaccel.push_back(ta);
271
      }
272
    }
273
 
274
    max_objects = _max_objects;
275
    max_level = _max_level;
276
    init();
277
  }
278
 
279
  void BSPTree::init(const TriMesh* mesh, Mat4x4f transform, 
280
             vector<int> &trilist, 
281
             int _max_objects, int _max_level) 
282
  {
283
    trimesh.push_back(mesh);
284
    transforms.push_back(transform);
285
    // Loop through all triangles and add them to intersection structure
286
    for(unsigned int j=0;j<trilist.size();j++) 
287
    {
288
      Vec3i face = mesh->geometry.face(trilist[j]);
289
      ISectTri new_tri;
290
      new_tri.point0 = transform.mul_3D_point(mesh->geometry.vertex(face[0]));
291
      new_tri.point1 = transform.mul_3D_point(mesh->geometry.vertex(face[1]));
292
      new_tri.point2 = transform.mul_3D_point(mesh->geometry.vertex(face[2]));
293
      new_tri.edge0 = new_tri.point1 - new_tri.point0;
294
      new_tri.edge1 = new_tri.point2 - new_tri.point0;
295
      new_tri.mesh_id = 0;
296
      new_tri.tri_id = trilist[j];
297
      isecttris.push_back(new_tri);
298
      TriAccel ta;
299
      create_tri_accel(new_tri.point0, new_tri.point1, new_tri.point2, ta);
300
      ta.mesh_id = 0;
301
      ta.tri_id = trilist[j];
302
      triaccel.push_back(ta);
303
    }
304
 
305
    max_objects = _max_objects;
306
    max_level = _max_level;
307
    init();
308
  }
309
 
310
  void BSPTree::build() 
311
  {
312
    if (!b_is_build) 
313
    {
314
      vector<ISectTri*> objects;
315
      vector<TriAccel*> tri_objects;
316
      for(unsigned int i=0;i<isecttris.size();i++) 
317
      {
318
    ISectTri* tri = &isecttris[i];
319
    TriAccel* tri_accel = &triaccel[i];
320
    objects.push_back(tri);
321
    tri_objects.push_back(tri_accel);
322
      }
323
      subdivide_node(*root, bbox, 0, objects, tri_objects);
324
      b_is_build = true;
325
    }
326
    isecttris.clear();
327
    all_objects.clear();
328
    make_fast_tree(root);
329
  }
330
 
331
  bool BSPTree::is_build() 
332
  {
333
    return b_is_build;
334
  }
335
 
336
  void BSPTree::print(BSPNode *node, int depth) 
337
  {
338
    if (node==0)
339
      return;
340
    for(int i=0;i<depth;i++)
341
      cout << " ";
342
//  cout << "axis:" << node->axis_leaf << ", count:" << node->objects.size() << ", plane:" << node->plane << ", " << endl;
343
    print(node->left, depth+1);
344
    print(node->right, depth+1);
345
  }
346
 
347
  int BSPTree::size(BSPNode *node) 
348
  {
349
    if (node==0)
350
      return 0;
351
    int s = sizeof(BSPNode);
352
    s+= node->count * sizeof(ISectTri);
353
    s+=size(node->left);
354
    s+=size(node->right);
355
    return s;
356
  }
357
 
358
  int BSPTree::size() 
359
  {
360
    return size(root);
361
  }
362
 
363
/*__declspec(align(16))*/ static const unsigned int modulo[] = {0,1,2,0,1};
364
 
365
  inline bool intersect2(Ray &ray, const TriAccel &acc, double t_max) 
366
  {
367
//  cout << "Acc: " << (int)&acc << " ";
368
//inline bool Intersect(TriAccel &acc,Ray &ray)
369
#define ku modulo[acc.k+1]
370
#define kv modulo[acc.k+2]
371
    // don’t prefetch here, assume data has already been prefetched
372
    // start high-latency division as early as possible
373
    const double nd = 1.0/((double)ray.direction[acc.k] + (double)acc.n_u * (double)ray.direction[ku] + (double)acc.n_v * (double)ray.direction[kv]);
374
    const double f = ((double)acc.n_d - (double)ray.origin[acc.k]   - (double)acc.n_u * (double)ray.origin[ku] - (double)acc.n_v * (double)ray.origin[kv]) * nd;
375
    // check for valid distance.
376
    if (!(t_max > f && f > 0.001)||ray.dist<f) return false;
377
    // compute hitpoint positions on uv plane
378
    const double hu = (ray.origin[ku] + f * ray.direction[ku]);
379
    const double hv = (ray.origin[kv] + f * ray.direction[kv]);
380
    // check first barycentric coordinate
381
    const double lambda = (hu * (double)acc.b_nu + hv * (double)acc.b_nv + (double)acc.b_d);
382
    if (lambda < 0.0) return false;
383
    // check second barycentric coordinate
384
    const double mue = (hu * (double)acc.c_nu + hv * (double)acc.c_nv + (double)acc.c_d);
385
    if (mue < 0.0) return false;
386
    // check third barycentric coordinate
387
    if (lambda+mue > 1.0) return false;
388
    // have a valid hitpoint here. store it.
389
    ray.dist = f;
390
    ray.u = lambda;
391
    ray.v = mue;
392
    ray.hit_object = (TriMesh*)acc.mesh_id;
393
    ray.hit_face_id = acc.tri_id;
394
    ray.has_hit=true;
395
    return true;
396
  }
397
 
398
  bool BSPTree::intersect_node(Ray &ray, const BSPNode &node, double t_min, double t_max) const 
399
  {
400
//    cout << node.plane << endl;
401
    node_calls++;
402
    static bool found;
403
    static int i;
404
 
405
    if (node.axis_leaf==4) 
406
    {
407
      found = false; 
408
      for(i=0;i<node.count;i++) 
409
      {
410
//  const TriAccel* tri2 = all_triaccel[node.id+i];
411
    const ISectTri* tri = all_objects[node.id+i];
412
//          if (intersect2(ray, *tri2, t_max))  
413
//              found=true;
414
    if (intersect(ray, *tri, t_max))  
415
      found=true;
416
      }
417
      if (found)
418
    return true;
419
      else 
420
    return false;
421
    } 
422
    else 
423
    {
424
      BSPNode *near_node;
425
      BSPNode *far_node;
426
      if (ray.direction[node.axis_leaf]>=0) 
427
      {
428
    near_node = node.left;
429
    far_node = node.right;
430
      } 
431
      else 
432
      {
433
    near_node = node.right;
434
    far_node = node.left;
435
      }
436
 
437
      // In order to avoid instability
438
      double t;
439
      if (fabs(ray.direction[node.axis_leaf])<d_eps)
440
    t = (node.plane - ray.origin[node.axis_leaf])/d_eps;// intersect node plane;
441
      else
442
    t = (node.plane - ray.origin[node.axis_leaf])/ray.direction[node.axis_leaf];// intersect node plane;
443
 
444
      if (t>t_max) 
445
        return intersect_node(ray, *near_node, t_min, t_max);
446
 
447
      else if (t<t_min) 
448
    return intersect_node(ray, *far_node, t_min, t_max);
449
      else 
450
      {
451
    if (intersect_node(ray, *near_node, t_min, t))
452
      return true;
453
    else 
454
      return intersect_node(ray, *far_node, t, t_max);
455
      }
456
    }
457
  }
458
 
459
  bool BSPTree::intersect(Ray &ray) const 
460
  {
461
    double t_min, t_max;
462
    bbox.intersect_min_max(ray, t_min, t_max);
463
    if (t_min>t_max)
464
      return false;
465
 
350 awk 466
//    printf("%.2f %.2f %.2f\n", ray.dist, t_min, t_max);
467
    if (!intersect_node(ray, *root, t_min, t_max))
468
      return false;
349 awk 469
//  cout << "____" << endl;
470
//  ray.reset();
471
//  cout << "Here " << endl;
350 awk 472
//    intersect_fast_node(ray, &fast_tree[0], t_min, t_max);
473
    //  if (!ray.has_hit)
474
    //return false;
349 awk 475
    else 
476
    {
477
 
350 awk 478
        //printf("HIT\n");
349 awk 479
 
480
 
481
      // Calculate the normal at the intersection
354 awk 482
        //ray.id = reinterpret_cast<int>(ray.hit_object);
349 awk 483
        ray.hit_object = trimesh[ray.id];
484
 
485
        Vec3i face = ray.hit_object->normals.face(ray.hit_face_id);
486
        Vec3f normal0 = ray.hit_object->normals.vertex(face[0]);
487
        Vec3f normal1 = ray.hit_object->normals.vertex(face[1]);
488
        Vec3f normal2 = ray.hit_object->normals.vertex(face[2]);
489
        ray.hit_normal = transforms[ray.id].mul_3D_vector(
490
            normalize(normal0*(1 - ray.u - ray.v)
491
            +normal1*ray.u
492
            +normal2*ray.v));
493
 
494
        ray.hit_pos = ray.origin + ray.direction*ray.dist;
495
/*
496
      Vec3i face = ray.hit_object->normals.face(ray.hit_face_id);
497
      Vec3f normal0 = ray.hit_object->normals.vertex(face[0]);
498
      Vec3f normal1 = ray.hit_object->normals.vertex(face[1]);
499
      Vec3f normal2 = ray.hit_object->normals.vertex(face[2]);
500
      ray.hit_normal = normalize(normal0*(1 - ray.u - ray.v)
501
                 +normal1*ray.u
502
                 +normal2*ray.v);
503
      ray.hit_pos = ray.origin + ray.direction*ray.dist;
504
*/
505
 
506
      return true;
507
    }
508
  }
509
 
510
  const int MAX_DEPTH=25;
511
 
512
  void BSPTree::make_fast_tree(BSPNode *node) 
513
  {
514
    fast_tree.resize(1000000); // 
515
    FastBSPNode f_node;
516
    fast_tree.push_back(f_node);
517
    push_fast_bsp_node(node,0);
518
  }
519
 
520
  void BSPTree::push_fast_bsp_node(BSPNode *node, int id) 
521
  {
522
    if (node->axis_leaf==4)  // It is a leaf
523
    {
354 awk 524
        assert(false);
525
        //TODO: cant compile on 64 bit gcc
526
 
527
        //fast_tree[id].leaf.flagAndOffset = (unsigned int)1<<31 | (unsigned int)(&all_triaccel[node->id]);
349 awk 528
      fast_tree[id].leaf.count = node->count;
529
    } 
530
    else // It is an inner node
531
    { 
532
      FastBSPNode fnode;
533
      int p_l = fast_tree.size();
534
      fast_tree.push_back(fnode); // left
535
      fast_tree.push_back(fnode); // right
536
      push_fast_bsp_node(node->left, p_l);
537
      push_fast_bsp_node(node->right, p_l+1);
354 awk 538
 
539
      assert(false);
540
      //TODO: gcc64 bit failure
541
 
542
      //fast_tree[id].inner.flagAndOffset = (unsigned int) &fast_tree[p_l] | node->axis_leaf;
349 awk 543
      fast_tree[id].inner.splitCoordinate = node->plane;
544
      node->ref = fast_tree[id].inner.flagAndOffset;
545
    }
546
  }
547
 
548
#define ABSP_ISLEAF(n)       (n->inner.flagAndOffset & (unsigned int)1<<31)
549
#define ABSP_DIMENSION(n)    (n->inner.flagAndOffset & 0x3)
550
#define ABSP_OFFSET(n)       (n->inner.flagAndOffset & (0x7FFFFFFC))
551
#define ABSP_NEARNODE(n)     (FastBSPNode*)(ray.direction[dimension]>=0?ABSP_OFFSET(node):ABSP_OFFSET(node)+sizeof(*node))
552
#define ABSP_FARNODE(n)      (FastBSPNode*)(ray.direction[dimension]>=0?ABSP_OFFSET(node)+sizeof(*node):ABSP_OFFSET(node))
553
#define ABSP_TRIANGLENODE(n) (vector<TriAccel*>::iterator)(n->flagAndOffset & (0x7FFFFFFF))
554
 
555
  struct Stack 
556
  {
557
    FastBSPNode *node;
558
    double t_min;
559
    double t_max;
560
  };
561
 
562
  inline void IntersectAlltrianglesInLeaf(const BSPLeaf* leaf, Ray &ray, double t_max) {
563
    TriAccel** tri_acc_ptr = reinterpret_cast<TriAccel**>(leaf->flagAndOffset & (0x7FFFFFFF));
564
    vector<TriAccel*>::iterator acc = vector<TriAccel*>::iterator(tri_acc_ptr);
565
//  vector<TriAccel*>::iterator acc = ABSP_TRIANGLENODE(leaf);
566
    for(unsigned int i=0;i<leaf->count;++i)
567
      intersect2(ray, *(*acc++), t_max);
568
  }
569
 
570
  void BSPTree::intersect_fast_node(Ray &ray, const FastBSPNode *node, double t_min, double t_max) const 
571
  {
572
    Stack stack[MAX_DEPTH];
573
    int stack_id=0;
574
    double t;
575
    // Precalculate one over dir
576
    double one_over_dir[3];
577
    for(int i=0;i<3;i++) 
578
    {
579
      if (ray.direction[i]!=0)
580
    one_over_dir[i]=1.0/ray.direction[i];
581
      else
582
    one_over_dir[i]=1.0/d_eps;
583
    }
584
 
585
    int dimension;
586
    while(1) 
587
    {
588
      while(!ABSP_ISLEAF(node)) 
589
      {
590
    dimension = ABSP_DIMENSION(node);
591
    t = (node->inner.splitCoordinate - ray.origin[dimension])*one_over_dir[dimension];
592
    if (t>=t_max) 
593
      node = ABSP_NEARNODE(node);
594
    else if (t<=t_min)
595
      node = ABSP_FARNODE(node);
596
    else 
597
    {
598
      // Stack push
599
      stack[stack_id].node = ABSP_FARNODE(node);
600
      stack[stack_id].t_min = t;
601
      stack[stack_id++].t_max = t_max;
602
      // Set current node to near side
603
      node = ABSP_NEARNODE(node);
604
      t_max = t;
605
    }
606
      }
607
 
608
      IntersectAlltrianglesInLeaf(&node->leaf, ray, t_max);
609
      if (ray.dist<t_max)
610
    return;
611
      if (stack_id==0)
612
    return;
613
      // Stack pop
614
 
615
      node = stack[--stack_id].node;
616
      t_min = stack[stack_id].t_min;
617
      t_max = stack[stack_id].t_max;
618
    }
619
  }
620
 
621
  bool BSPTree::intersect(Ray &ray, const ISectTri &isecttri, double t_max) const 
622
  {
623
    tri_calls++;
624
    // This is the Möller-Trumbore method
625
    static Vec3d direction; // = Vec3d(ray.direction);
626
    static Vec3d origin; // = Vec3d(ray.direction);
627
    static Vec3d edge1; // = Vec3d(ray.direction);
628
    static Vec3d edge0; // = Vec3d(ray.direction);
629
    static Vec3d point0; // = Vec3d(ray.direction);
630
    static Vec3d p;
631
    static Vec3d q;
632
    static Vec3d s;
633
    static Vec3f point;
634
    static double a, f, u, v, t;
635
    static double ray_dist_sq;
636
 
637
    static double dist_sq;
638
 
639
    static Vec3f found_point;
640
 
641
    direction.set((double)ray.direction[0], (double)ray.direction[1], (double)ray.direction[2]);
642
    edge0.set((double)isecttri.edge0[0], (double)isecttri.edge0[1], (double)isecttri.edge0[2]);
643
    edge1.set((double)isecttri.edge1[0], (double)isecttri.edge1[1], (double)isecttri.edge1[2]);
644
 
645
// Ray-tri intersection
646
//      const double eps = 0.001f;
647
/********* Complain!!!!!!!!!!!!!!!! *****************/      
648
    //p = cross(direction, edge1);
649
    // Why the &%¤/ is this so much faster????? - Because of MS Compiler - the intel compiler does it right!!
650
    p.set(direction[1] * edge1[2] - direction[2] * edge1[1], 
651
      direction[2] * edge1[0] - direction[0] * edge1[2], 
652
      direction[0] * edge1[1] - direction[1] * edge1[0]);
653
/****************************************************/
654
    a = dot(edge0,p);
655
    if (a>-d_eps && a<d_eps)
656
      return false;
657
  // Just delay these 
658
    origin.set((double)ray.origin[0], (double)ray.origin[1], (double)ray.origin[2]);
659
    point0.set((double)isecttri.point0[0], (double)isecttri.point0[1], (double)isecttri.point0[2]);
660
 
661
    f = 1.0/a;
662
    s = origin - point0;
663
    u = f*dot(s,p);
664
    if (u<0.0 || u>1.0)
665
      return false;
666
/********* Complain!!!!!!!!!!!!!!!! *****************/      
667
  //q = cross(s, edge0);
668
  // Why the &%¤/ is this so much faster?????
669
    q.set(s[1] * edge0[2] - s[2] * edge0[1], 
670
      s[2] * edge0[0] - s[0] * edge0[2], 
671
      s[0] * edge0[1] - s[1] * edge0[0]);
672
/****************************************************/
673
 
674
    v = f * dot(direction, q);  
675
    if (v<0.0 || u+v>1.0)
676
      return false;
677
    t = f*dot(edge1, q);
678
    if (t<0)
679
      return false;
680
    if (fabs(t)<d_eps)
681
      return false;
682
    if (t_max<t)
683
      return false;
684
    point = ray.origin + ray.direction*t;
685
 
686
    dist_sq = dot(point-ray.origin, point-ray.origin);
687
    ray_dist_sq = ray.dist * ray.dist;
688
 
689
    if (dist_sq<f_eps)
690
      return false;
691
    if (dist_sq>ray_dist_sq)
692
      return false;
693
 
694
    ray.dist = sqrt(dist_sq);
695
    ray.u = u;
696
    ray.v = v;
697
    ray.hit_object = (TriMesh*)isecttri.mesh_id;
698
    ray.hit_face_id = isecttri.tri_id;
699
    ray.has_hit=true;
700
    return true; 
701
  }
702
}