Subversion Repositories gelsvn

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
595 jab 1
/* ----------------------------------------------------------------------- *
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
3
 * Copyright (C) the authors and DTU Informatics
4
 * For license and list of authors, see ../../doc/intro.pdf
5
 * ----------------------------------------------------------------------- */
6
 
7
/**
8
 * @file ThreeDDDA.h
9
 * @brief a class for traversing cells in a regular grid pierced by a ray.
10
 */
443 jab 11
#ifndef __GEOMETRY_THREEDDDA_H
12
#define __GEOMETRY_THREEDDDA_H
61 jab 13
 
304 jab 14
#ifdef _MSC_VER 
15
typedef __int64 Integer64Bits;
16
#else
17
typedef int64_t Integer64Bits;
18
#endif
19
 
20
 
601 jab 21
#include "../CGLA/Vec3f.h"
22
#include "../CGLA/Vec3i.h"
61 jab 23
 
24
namespace Geometry
25
{
26
 
27
 
89 jab 28
	/** \brief A ThreeDDDA is a class for traversing a grid of cells. 
29
 
30
      We wish to 
61 jab 31
			enumerate all cells pierced by the ray going from a point p0 to a 
32
			point p1. It is dangerous to use floating point arithmetic since rounding
33
			errors may accumulate entailing that the 3ddda misses the cell containing
34
			the end point of the ray.
35
 
36
			Daniel Cohen-Or devised a technique for exact ray traversal using only 
37
			integer arithmetic. Using integer arithmetic, the computations are
38
			exact, but the ray must start and terminate exactly at grid points.
39
			I.e. the ray must start and terminate in cell corners.
40
 
41
			To overcome this issue, I have implemented a scheme where the ray
42
			starts and terminates on a grid that is finer than the cell grid.
43
			This means that we have fast and exact computations, and the ray can
44
			travel between two almost arbitrary points.
45
 
46
			A central problem with this scheme was that - in order to simplify
47
			things during the iterative traversal - the ray direction vector
48
			is always mirrored into the first octant (+x +y +z).  If the fine
49
			grid used for the ray start and end points is a superset of the
50
			grid points of the cell grid, this mirroring is almost impossible
51
			to implement correctly. This is due to the fact that the first
52
			cell on the right side of the y axis is called 0,y whereas the
53
			first cell on the left is called -1,y. This lack of symmetry makes
54
			things very difficult, but by ensuring that the endpoints of a ray
55
			can never lie on an a corner, edge, or face of the cell grid, we
56
			can make the problems go away.
57
 
58
			Hence, in this implementation, the fine grid is obtained by dividing 
59
			the cell into NxNxN subcells, but the grid points	of the fine grid lie 
60
			at the CENTRES of these subcells.  
61
 
62
	*/
63
 
64
	class ThreeDDDA
65
	{
66
		/** Resolution of the grid. This number indicates how many subcells
67
				(along each axis) a cell is divided into. */
68
		const int PRECISION;
69
 
70
		/// Sign indicates which octant contains the direction vector.
71
		const CGLA::Vec3i sgn;
72
 
73
		/// Fine grid position where the ray begins
74
		const CGLA::Vec3i p0_int;
75
 
76
		// Fine grid position where the ray ends.
77
		const CGLA::Vec3i p1_int;
78
 
79
		/// The direction of the ray 
80
		const CGLA::Vec3i dir;
81
 
82
		/// The cell containing the initial point on the ray.
83
		const CGLA::Vec3i first_cell;
84
 
85
		/// The cell containing the last point on the ray.
86
		const CGLA::Vec3i last_cell;
87
 
88
		/** Number of steps. We can compute the number of steps that the
89
				ray will take in advance. */
90
		const int no_steps; 
91
 
92
		/** The direction vector, premultiplied by the step length.
93
				This constant is used to update the equations governing the
94
				traversal. */
95
		const CGLA::Vec3i dir_pre_mul;
96
 
97
		/** Discriminators. These values are delta[i]*dir[j] where delta[i]
98
				is the distance from the origin of the ray to the current position
99
				along the i axis multiplied by two). dir[j] is the direction vector
100
				coordinate j. */
101
 
304 jab 102
		Integer64Bits disc[3][3];
61 jab 103
 
104
		/** The current cell containing the ray. This value along with the 
105
				discriminators mentioned above represent the state of a ThreeDDDA. */
106
		CGLA::Vec3i cell;
107
 
108
 
109
		/** Return the position on the fine grid of a vector v. 
110
				We simply multiply by the precision and round down. Note that 
111
				it is necessary to use floor since simply clamping the value
112
				will always round toward zero.
113
		*/
114
		const CGLA::Vec3i grid_pos(const CGLA::Vec3f& v) const;
115
 
116
		/// Compute the cell containing a given fine grid position.
117
		CGLA::Vec3i get_cell(const CGLA::Vec3i& v) const;
118
 
119
		/// Mirror a fine grid position
120
		CGLA::Vec3i mirror(const CGLA::Vec3i& v) const;
121
 
122
 
123
	public:
124
 
125
		/** Create a 3DDDA based on the two end-points of the ray. An optional
126
				last argument indicates the resolution of the grid. */
127
		ThreeDDDA(const CGLA::Vec3f& p0, const CGLA::Vec3f& p1, 
128
							int _PRECISION = 0x100);
129
 
130
		/// Return the total number of steps the ray will traverse.
131
		int get_no_steps() const
132
		{
133
			return no_steps;
134
		}
135
 
136
		/// Yields the current cell containing the ray.
137
		const CGLA::Vec3i& get_current_cell() const
138
		{
139
			return cell;
140
		}
141
 
142
		/// Get the initial cell containing the ray.
143
		const CGLA::Vec3i& get_first_cell() const
144
		{
145
			return first_cell;
146
		}
147
 
148
		/// Get the last cell containing the ray.
149
		const CGLA::Vec3i& get_last_cell() const
150
		{
151
			return last_cell;
152
		}
153
 
154
		/// Get the initial point containing the ray.
155
		const CGLA::Vec3f get_first_point() const
156
		{
157
			return (CGLA::Vec3f(p0_int)+CGLA::Vec3f(0.5))/PRECISION;
158
		}
159
 
160
 
161
		/// Get the last cell containing the ray.
162
		const CGLA::Vec3f get_last_point() const
163
		{
164
			return (CGLA::Vec3f(p1_int)+CGLA::Vec3f(0.5))/PRECISION;
165
		}
166
 
167
		/// Returns true if we have reached the last cell.
168
		bool at_end() const
169
		{
170
			return cell == last_cell;
171
		}
172
 
173
		/// Take a step along the ray.
174
		void operator++()
175
		{
176
			int step_dir;
177
			if(disc[1][0] > disc[0][1])
178
				if(disc[2][0] > disc[0][2])
179
					step_dir = 0;
180
				else
181
					step_dir = 2;
182
			else
183
				if(disc[2][1] > disc[1][2])
184
					step_dir = 1;
185
				else
186
					step_dir = 2;
187
 
188
			const int k1 = (step_dir + 1) % 3;
189
			const int k2 = (step_dir + 2) % 3;
190
			cell[step_dir] += sgn[step_dir];
191
			disc[step_dir][k1] += dir_pre_mul[k1];
192
			disc[step_dir][k2] += dir_pre_mul[k2];
193
		}
194
 
195
		/// Get the initial point containing the ray.
196
			const CGLA::Vec3f step();
197
 
198
 
199
	};
200
}
201
 
202
#endif