1 |
/* ----------------------------------------------------------------------- *
|
1 |
/* ----------------------------------------------------------------------- *
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
2 |
* This file is part of GEL, http://www.imm.dtu.dk/GEL
|
3 |
* Copyright (C) the authors and DTU Informatics
|
3 |
* Copyright (C) the authors and DTU Informatics
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
4 |
* For license and list of authors, see ../../doc/intro.pdf
|
5 |
* ----------------------------------------------------------------------- */
|
5 |
* ----------------------------------------------------------------------- */
|
6 |
|
6 |
|
7 |
/**
|
7 |
/**
|
8 |
* @file Manifold.h
|
8 |
* @file Manifold.h
|
9 |
* @brief The Manifold class is the main data structure of HMesh - the actual mesh.
|
9 |
* @brief The Manifold class is the main data structure of HMesh - the actual mesh.
|
10 |
*/
|
10 |
*/
|
11 |
|
11 |
|
12 |
#pragma once
|
12 |
#pragma once
|
13 |
|
13 |
|
14 |
#include <algorithm>
|
14 |
#include <algorithm>
|
15 |
#include "../CGLA/Vec3d.h"
|
15 |
#include "../CGLA/Vec3d.h"
|
16 |
|
16 |
|
17 |
#include "ConnectivityKernel.h"
|
17 |
#include "ConnectivityKernel.h"
|
18 |
#include "Iterators.h"
|
18 |
#include "Iterators.h"
|
19 |
#include "Walker.h"
|
19 |
#include "Walker.h"
|
20 |
#include "AttributeVector.h"
|
20 |
#include "AttributeVector.h"
|
21 |
|
21 |
|
22 |
|
22 |
|
23 |
namespace Geometry
|
23 |
namespace Geometry
|
24 |
{
|
24 |
{
|
25 |
// forward declaration
|
25 |
// forward declaration
|
26 |
class TriMesh;
|
26 |
class TriMesh;
|
27 |
class IndexedFaceSet;
|
27 |
class IndexedFaceSet;
|
28 |
}
|
28 |
}
|
29 |
|
29 |
|
30 |
namespace HMesh
|
30 |
namespace HMesh
|
31 |
{
|
31 |
{
|
32 |
/** The Manifold class represents a halfedge based mesh. Since meshes based on the halfedge
|
32 |
/** The Manifold class represents a halfedge based mesh. Since meshes based on the halfedge
|
33 |
representation must be manifold (although exceptions could be made) the class is thus named.
|
33 |
representation must be manifold (although exceptions could be made) the class is thus named.
|
34 |
Manifold contains many functions for mesh manipulation and associated the position attribute
|
34 |
Manifold contains many functions for mesh manipulation and associated the position attribute
|
35 |
with vertices.*/
|
35 |
with vertices.*/
|
36 |
|
36 |
|
37 |
class Manifold
|
37 |
class Manifold
|
38 |
{
|
38 |
{
|
39 |
public:
|
39 |
public:
|
40 |
|
40 |
|
41 |
/// Vector type used for positions of vertices.
|
41 |
/// Vector type used for positions of vertices.
|
42 |
typedef CGLA::Vec3d Vec;
|
42 |
typedef CGLA::Vec3d Vec;
|
43 |
|
43 |
|
44 |
/// Default constructor
|
44 |
/// Default constructor
|
45 |
Manifold();
|
45 |
Manifold();
|
46 |
|
46 |
|
47 |
/** \brief Build a manifold.
|
47 |
/** \brief Build a manifold.
|
48 |
The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces.
|
48 |
The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces.
|
49 |
facevecis an array where each entry indicates the number of vertices in that face.
|
49 |
facevecis an array where each entry indicates the number of vertices in that face.
|
50 |
The array indices contains all the corresponding vertex indices in one concatenated list. */
|
50 |
The array indices contains all the corresponding vertex indices in one concatenated list. */
|
51 |
void build( size_t no_vertices,
|
51 |
void build( size_t no_vertices,
|
52 |
const float* vertvec,
|
52 |
const float* vertvec,
|
53 |
size_t no_faces,
|
53 |
size_t no_faces,
|
54 |
const int* facevec,
|
54 |
const int* facevec,
|
55 |
const int* indices);
|
55 |
const int* indices);
|
56 |
|
56 |
|
57 |
/** \brief Build a manifold.
|
57 |
/** \brief Build a manifold.
|
58 |
This function is for vertices given in double precision.
|
58 |
This function is for vertices given in double precision.
|
59 |
The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces.
|
59 |
The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces.
|
60 |
facevecis an array where each entry indicates the number of vertices in that face.
|
60 |
facevecis an array where each entry indicates the number of vertices in that face.
|
61 |
The array indices contains all the corresponding vertex indices in one concatenated list. */
|
61 |
The array indices contains all the corresponding vertex indices in one concatenated list. */
|
62 |
void build( size_t no_vertices,
|
62 |
void build( size_t no_vertices,
|
63 |
const double* vertvec,
|
63 |
const double* vertvec,
|
64 |
size_t no_faces,
|
64 |
size_t no_faces,
|
65 |
const int* facevec,
|
65 |
const int* facevec,
|
66 |
const int* indices);
|
66 |
const int* indices);
|
67 |
|
67 |
|
68 |
/// Build a manifold from a TriMesh
|
68 |
/// Build a manifold from a TriMesh
|
69 |
void build(const Geometry::TriMesh& mesh);
|
69 |
void build(const Geometry::TriMesh& mesh);
|
70 |
|
70 |
|
71 |
/** Add a face to the Manifold.
|
71 |
/** Add a face to the Manifold.
|
72 |
This function is provided a vector of points in space and transforms it into a single
|
72 |
This function is provided a vector of points in space and transforms it into a single
|
73 |
polygonal face calling build. It is purely for convenience. */
|
73 |
polygonal face calling build. It is purely for convenience. */
|
74 |
FaceID add_face(std::vector<Manifold::Vec> points);
|
74 |
FaceID add_face(std::vector<Manifold::Vec> points);
|
75 |
|
75 |
|
76 |
/** Removes a face from the Manifold. If it is an interior face it is simply replaces
|
76 |
/** Removes a face from the Manifold. If it is an interior face it is simply replaces
|
77 |
by an InvalidFaceID. If the face contains boundary edges, these are removed. Situations
|
77 |
by an InvalidFaceID. If the face contains boundary edges, these are removed. Situations
|
78 |
may arise where the mesh is no longer manifold because the situation at a boundary vertex
|
78 |
may arise where the mesh is no longer manifold because the situation at a boundary vertex
|
79 |
is not homeomorphic to a half disk. This, we can probably ignore since from the data
|
79 |
is not homeomorphic to a half disk. This, we can probably ignore since from the data
|
80 |
structure point of view it is not really a problem that a vertex is incident on two holes -
|
80 |
structure point of view it is not really a problem that a vertex is incident on two holes -
|
81 |
a hole can be seen as a special type of face. The function returns false if the FaceID is
|
81 |
a hole can be seen as a special type of face. The function returns false if the FaceID is
|
82 |
not valid, otherwise the function must complete. */
|
82 |
not valid, otherwise the function must complete. */
|
83 |
bool remove_face(FaceID fid);
|
83 |
bool remove_face(FaceID fid);
|
84 |
|
84 |
|
85 |
/** Remove an edge from the Manifold.
|
85 |
/** Remove an edge from the Manifold.
|
86 |
This function will remove the faces on either side and the edge itself in the process. Thus,
|
86 |
This function will remove the faces on either side and the edge itself in the process. Thus,
|
87 |
it is a simple application of remove_face. */
|
87 |
it is a simple application of remove_face. */
|
88 |
bool remove_edge(HalfEdgeID hid);
|
88 |
bool remove_edge(HalfEdgeID hid);
|
89 |
|
89 |
|
90 |
/** Remove a vertex from the Manifold.
|
90 |
/** Remove a vertex from the Manifold.
|
91 |
This function merges all faces around the vertex into one and then removes
|
91 |
This function merges all faces around the vertex into one and then removes
|
92 |
this resulting face. */
|
92 |
this resulting face. */
|
93 |
bool remove_vertex(VertexID vid);
|
93 |
bool remove_vertex(VertexID vid);
|
94 |
|
94 |
|
95 |
/// number of vertices
|
95 |
/// number of vertices
|
96 |
size_t no_vertices() const { return kernel.no_vertices();}
|
96 |
size_t no_vertices() const { return kernel.no_vertices();}
|
97 |
/// number of active faces
|
97 |
/// number of active faces
|
98 |
size_t no_faces() const { return kernel.no_faces();}
|
98 |
size_t no_faces() const { return kernel.no_faces();}
|
99 |
/// number of active halfedges
|
99 |
/// number of active halfedges
|
100 |
size_t no_halfedges() const { return kernel.no_halfedges();}
|
100 |
size_t no_halfedges() const { return kernel.no_halfedges();}
|
101 |
|
101 |
|
102 |
/// number of total vertices in kernel
|
102 |
/// number of total vertices in kernel
|
103 |
size_t allocated_vertices() const { return kernel.allocated_vertices();}
|
103 |
size_t allocated_vertices() const { return kernel.allocated_vertices();}
|
104 |
/// number of total faces in kernel
|
104 |
/// number of total faces in kernel
|
105 |
size_t allocated_faces() const { return kernel.allocated_faces();}
|
105 |
size_t allocated_faces() const { return kernel.allocated_faces();}
|
106 |
/// number of total halfedges in kernel
|
106 |
/// number of total halfedges in kernel
|
107 |
size_t allocated_halfedges() const { return kernel.allocated_halfedges();}
|
107 |
size_t allocated_halfedges() const { return kernel.allocated_halfedges();}
|
108 |
|
108 |
|
109 |
/// check if ID of vertex is in use
|
109 |
/// check if ID of vertex is in use
|
110 |
bool in_use(VertexID id) const { return kernel.in_use(id);}
|
110 |
bool in_use(VertexID id) const { return kernel.in_use(id);}
|
111 |
/// check if ID of face is in use
|
111 |
/// check if ID of face is in use
|
112 |
bool in_use(FaceID id) const { return kernel.in_use(id);}
|
112 |
bool in_use(FaceID id) const { return kernel.in_use(id);}
|
113 |
/// check if ID of halfedge is in use
|
113 |
/// check if ID of halfedge is in use
|
114 |
bool in_use(HalfEdgeID id) const { return kernel.in_use(id);}
|
114 |
bool in_use(HalfEdgeID id) const { return kernel.in_use(id);}
|
115 |
|
115 |
|
116 |
IDIteratorPair<Vertex> vertices() const {return IDIteratorPair<Vertex>(kernel.vertices_begin(),
|
116 |
IDIteratorPair<Vertex> vertices() const {return IDIteratorPair<Vertex>(kernel.vertices_begin(),
|
117 |
kernel.vertices_end());}
|
117 |
kernel.vertices_end());}
|
118 |
IDIteratorPair<Face> faces() const {return IDIteratorPair<Face>(kernel.faces_begin(),
|
118 |
IDIteratorPair<Face> faces() const {return IDIteratorPair<Face>(kernel.faces_begin(),
|
119 |
kernel.faces_end());}
|
119 |
kernel.faces_end());}
|
120 |
IDIteratorPair<HalfEdge> halfedges() const {return IDIteratorPair<HalfEdge>(kernel.halfedges_begin(),
|
120 |
IDIteratorPair<HalfEdge> halfedges() const {return IDIteratorPair<HalfEdge>(kernel.halfedges_begin(),
|
121 |
kernel.halfedges_end());}
|
121 |
kernel.halfedges_end());}
|
122 |
|
122 |
|
123 |
/// Iterator to first VertexID, optional argument defines if unused items should be skipped
|
123 |
/// Iterator to first VertexID, optional argument defines if unused items should be skipped
|
124 |
VertexIDIterator vertices_begin(bool skip = true) const { return kernel.vertices_begin();}
|
124 |
VertexIDIterator vertices_begin(bool skip = true) const { return kernel.vertices_begin();}
|
125 |
/// Iterator to first FaceID, optional argument defines if unused items should be skipped
|
125 |
/// Iterator to first FaceID, optional argument defines if unused items should be skipped
|
126 |
FaceIDIterator faces_begin(bool skip = true) const { return kernel.faces_begin();}
|
126 |
FaceIDIterator faces_begin(bool skip = true) const { return kernel.faces_begin();}
|
127 |
/// Iterator to first HalfEdgeID, optional argument defines if unused items should be skipped
|
127 |
/// Iterator to first HalfEdgeID, optional argument defines if unused items should be skipped
|
128 |
HalfEdgeIDIterator halfedges_begin(bool skip = true) const { return kernel.halfedges_begin();}
|
128 |
HalfEdgeIDIterator halfedges_begin(bool skip = true) const { return kernel.halfedges_begin();}
|
129 |
|
129 |
|
130 |
/// Iterator to past the end VertexID
|
130 |
/// Iterator to past the end VertexID
|
131 |
VertexIDIterator vertices_end() const { return kernel.vertices_end();}
|
131 |
VertexIDIterator vertices_end() const { return kernel.vertices_end();}
|
132 |
/// Iterator topast the end FaceID
|
132 |
/// Iterator topast the end FaceID
|
133 |
FaceIDIterator faces_end() const { return kernel.faces_end();}
|
133 |
FaceIDIterator faces_end() const { return kernel.faces_end();}
|
134 |
/// Iterator to past the end HalfEdgeID
|
134 |
/// Iterator to past the end HalfEdgeID
|
135 |
HalfEdgeIDIterator halfedges_end() const {return kernel.halfedges_end(); }
|
135 |
HalfEdgeIDIterator halfedges_end() const {return kernel.halfedges_end(); }
|
136 |
|
136 |
|
137 |
|
137 |
|
138 |
/** \brief Bridge f0 and f1 by connecting the vertex pairs given in pairs.
|
138 |
/** \brief Bridge f0 and f1 by connecting the vertex pairs given in pairs.
|
139 |
This function creates a cylindrical connection between f0 and f1. f0 and f1 are removed and the vertices
|
139 |
This function creates a cylindrical connection between f0 and f1. f0 and f1 are removed and the vertices
|
140 |
given in pairs are connected by edges. The result is a cylindrical connection that changes the genus of the object.
|
140 |
given in pairs are connected by edges. The result is a cylindrical connection that changes the genus of the object.
|
141 |
|
141 |
|
142 |
This function leaves all error chethising in the hands of the user (for now). The faces clearly should not have any
|
142 |
This function leaves all error chethising in the hands of the user (for now). The faces clearly should not have any
|
143 |
vertices or edges in common as this will create a non-manifold situation. Also the faces should face towards or away
|
143 |
vertices or edges in common as this will create a non-manifold situation. Also the faces should face towards or away
|
144 |
from each other and be in a position where it is reasonable to make the bridge. The connections should also make sense
|
144 |
from each other and be in a position where it is reasonable to make the bridge. The connections should also make sense
|
145 |
from a geometric point of view and should be in a counter clothiswise loop on f0 and a clothiswise loop on f1. No need to
|
145 |
from a geometric point of view and should be in a counter clothiswise loop on f0 and a clothiswise loop on f1. No need to
|
146 |
connect all vertices.
|
146 |
connect all vertices.
|
147 |
|
147 |
|
148 |
The function returns a vector of HalfEdgeIDs. Those are, of course, the connecting halfedges - also the opposite edges.
|
148 |
The function returns a vector of HalfEdgeIDs. Those are, of course, the connecting halfedges - also the opposite edges.
|
149 |
*/
|
149 |
*/
|
150 |
std::vector<HalfEdgeID> bridge_faces(FaceID f0, FaceID f1, const std::vector<std::pair<VertexID, VertexID> >& pairs);
|
150 |
std::vector<HalfEdgeID> bridge_faces(FaceID f0, FaceID f1, const std::vector<std::pair<VertexID, VertexID> >& pairs);
|
151 |
|
151 |
|
152 |
|
152 |
|
153 |
/** \brief Collapse the halfedge h.
|
153 |
/** \brief Collapse the halfedge h.
|
154 |
The argument h is the halfedge being removed. The vertex v=h->opp->vert is the one being removed while h->vert survives.
|
154 |
The argument h is the halfedge being removed. The vertex v=h->opp->vert is the one being removed while h->vert survives.
|
155 |
The final argument indicates whether the surviving vertex should have the average position of the former vertices.
|
155 |
The final argument indicates whether the surviving vertex should have the average position of the former vertices.
|
156 |
By default false meaning that the surviving vertex retains it position.
|
156 |
By default false meaning that the surviving vertex retains it position.
|
157 |
This function is not guaranteed to keep the mesh sane unless, precond_collapse_edge has returned true !! */
|
157 |
This function is not guaranteed to keep the mesh sane unless, precond_collapse_edge has returned true !! */
|
158 |
void collapse_edge(HalfEdgeID h, bool avg_vertices = false);
|
158 |
void collapse_edge(HalfEdgeID h, bool avg_vertices = false);
|
159 |
|
159 |
|
160 |
/** \brief Split a face.
|
160 |
/** \brief Split a face.
|
161 |
The face, f, is split by creating an edge with endpoints v0 and v1 (the next two arguments).
|
161 |
The face, f, is split by creating an edge with endpoints v0 and v1 (the next two arguments).
|
162 |
The vertices of the old face between v0 and v1 (in counter clothiswise order) continue to belong to f.
|
162 |
The vertices of the old face between v0 and v1 (in counter clothiswise order) continue to belong to f.
|
163 |
The vertices between v1 and v0 belong to the new face. A handle to the new face is returned. */
|
163 |
The vertices between v1 and v0 belong to the new face. A handle to the new face is returned. */
|
164 |
FaceID split_face_by_edge(FaceID f, VertexID v0, VertexID v1);
|
164 |
FaceID split_face_by_edge(FaceID f, VertexID v0, VertexID v1);
|
165 |
|
165 |
|
166 |
/** \brief Split a polygon, f, by inserting a vertex at the barycenter.
|
166 |
/** \brief Split a polygon, f, by inserting a vertex at the barycenter.
|
167 |
This function is less likely to create flipped triangles than the split_face_triangulate function.
|
167 |
This function is less likely to create flipped triangles than the split_face_triangulate function.
|
168 |
On the other hand, it introduces more vertices and probably makes the triangles more acute.
|
168 |
On the other hand, it introduces more vertices and probably makes the triangles more acute.
|
169 |
A handle to the inserted vertex is returned. */
|
169 |
A handle to the inserted vertex is returned. */
|
170 |
VertexID split_face_by_vertex(FaceID f);
|
170 |
VertexID split_face_by_vertex(FaceID f);
|
171 |
// VertexID split_face_by_vertex(HalfEdgeID h);
|
171 |
// VertexID split_face_by_vertex(HalfEdgeID h);
|
172 |
|
172 |
|
173 |
/** \brief Insert a new vertex on halfedge h.
|
173 |
/** \brief Insert a new vertex on halfedge h.
|
174 |
The new halfedge is insterted as the previous edge to h.
|
174 |
The new halfedge is insterted as the previous edge to h.
|
175 |
A handle to the inserted vertex is returned. */
|
175 |
A handle to the inserted vertex is returned. */
|
176 |
VertexID split_edge(HalfEdgeID h);
|
176 |
VertexID split_edge(HalfEdgeID h);
|
177 |
|
177 |
|
178 |
/** \brief Stitch two halfedges.
|
178 |
/** \brief Stitch two halfedges.
|
179 |
Two boundary halfedges can be stitched together. This can be used to build a complex mesh
|
179 |
Two boundary halfedges can be stitched together. This can be used to build a complex mesh
|
180 |
from a bunch of simple faces. */
|
180 |
from a bunch of simple faces. */
|
181 |
bool stitch_boundary_edges(HalfEdgeID h0, HalfEdgeID h1);
|
181 |
bool stitch_boundary_edges(HalfEdgeID h0, HalfEdgeID h1);
|
182 |
|
182 |
|
183 |
/** \brief Merges two faces into a single polygon.
|
183 |
/** \brief Merges two faces into a single polygon.
|
184 |
The first face is f. The second face is adjacent to f along the halfedge h.
|
184 |
The first face is f. The second face is adjacent to f along the halfedge h.
|
185 |
This function returns true if the merging was possible and false otherwise.
|
185 |
This function returns true if the merging was possible and false otherwise.
|
186 |
Currently merge only fails if the mesh is already illegal. Thus it should, in fact, never fail. */
|
186 |
Currently merge only fails if the mesh is already illegal. Thus it should, in fact, never fail. */
|
187 |
bool merge_faces(FaceID f, HalfEdgeID h);
|
187 |
bool merge_faces(FaceID f, HalfEdgeID h);
|
188 |
|
188 |
|
189 |
/** \brief Merge all faces in the one ring of a vertex into a single polygon.
|
189 |
/** \brief Merge all faces in the one ring of a vertex into a single polygon.
|
190 |
The vertex is given by v.
|
190 |
The vertex is given by v.
|
191 |
|
191 |
|
192 |
The return value is the FaceID of the resulting polygonal face.
|
192 |
The return value is the FaceID of the resulting polygonal face.
|
193 |
InvalidFaceID is returned if
|
193 |
InvalidFaceID is returned if
|
194 |
- the input vertex is not in use or
|
194 |
- the input vertex is not in use or
|
195 |
- the input vertex has valence less than two which is a degenerate case.
|
195 |
- the input vertex has valence less than two which is a degenerate case.
|
196 |
- the input vertex is a boundary vertex of valence two - i.e. adjacent to just one face.
|
196 |
- the input vertex is a boundary vertex of valence two - i.e. adjacent to just one face.
|
197 |
- the same halfedge appears in two faces of the one ring of the input vertex: I.e.
|
197 |
- the same halfedge appears in two faces of the one ring of the input vertex: I.e.
|
198 |
the input vertex is twice adjacent to the same face!
|
198 |
the input vertex is twice adjacent to the same face!
|
199 |
|
199 |
|
200 |
Note that this function can create some unusual and arguably degenerate meshes. For instance,
|
200 |
Note that this function can create some unusual and arguably degenerate meshes. For instance,
|
201 |
two triangles which share all vertices is collapsed to a single pair of vertices connected by
|
201 |
two triangles which share all vertices is collapsed to a single pair of vertices connected by
|
202 |
a pair of halfedges bounding the same face. */
|
202 |
a pair of halfedges bounding the same face. */
|
203 |
FaceID merge_one_ring(VertexID v, float max_loop_length = FLT_MAX);
|
203 |
FaceID merge_one_ring(VertexID v, float max_loop_length = FLT_MAX);
|
204 |
|
204 |
|
205 |
/** \brief Close hole given by the invalid face of halfedgehandle h.
|
205 |
/** \brief Close hole given by the invalid face of halfedgehandle h.
|
206 |
returns FaceID of the created face or the face that is already there if the
|
206 |
returns FaceID of the created face or the face that is already there if the
|
207 |
face was not InvalidFaceID. */
|
207 |
face was not InvalidFaceID. */
|
208 |
FaceID close_hole(HalfEdgeID h);
|
208 |
FaceID close_hole(HalfEdgeID h);
|
- |
|
209 |
|
- |
|
210 |
/** \brief Create hole by opening a slit at a vertex.
|
- |
|
211 |
This function creates a hole by slitting the mesh at a vertex v along a pair of halfedges.
|
- |
|
212 |
The function returns the vertex created by this operation.
|
- |
|
213 |
The first halfedge h_in is oriented towards the vertex and the second, h_out, away from the
|
- |
|
214 |
vertex. Neither h_in nor h_out may be boundary halfedges for a hole since the result would be
|
- |
|
215 |
two holes separated by an edge. That is an abomination we should avoid. In particular because
|
- |
|
216 |
it would be invisible. h_in and h_out also should not be each other's opposite edges. That would
|
- |
|
217 |
result in an isolated vertex. */
|
- |
|
218 |
VertexID slit_vertex(VertexID v, HalfEdgeID h_in, HalfEdgeID h_out);
|
- |
|
219 |
|
- |
|
220 |
/** \brief Create hole by slitting open the mesh along the path given as argument.
|
- |
|
221 |
This function returns the HalfEdgeID of one of the halfedges bounding the created hole.
|
- |
|
222 |
The path is specified as a selection set of vertices. If the selected vertices form a closed
|
- |
|
223 |
loop, a piece is cut off from the mesh. Surprising results can occur if the selected vertices
|
- |
|
224 |
can be connected by more than one sequence (or a self intersecting sequence) of edges. */
|
- |
|
225 |
HalfEdgeID slit_edges(VertexAttributeVector<int>& selection);
|
209 |
|
226 |
|
210 |
/// \brief Flip an edge h.
|
227 |
/// \brief Flip an edge h.
|
211 |
void flip_edge(HalfEdgeID h);
|
228 |
void flip_edge(HalfEdgeID h);
|
212 |
|
229 |
|
213 |
/// Return reference to position given by VertexID
|
230 |
/// Return reference to position given by VertexID
|
214 |
Vec& pos(VertexID id);
|
231 |
Vec& pos(VertexID id);
|
215 |
/// Return const reference to position given by VertexID
|
232 |
/// Return const reference to position given by VertexID
|
216 |
const Vec& pos(VertexID id) const;
|
233 |
const Vec& pos(VertexID id) const;
|
217 |
|
234 |
|
218 |
/// Return a reference to the entire positions attribute vector
|
235 |
/// Return a reference to the entire positions attribute vector
|
219 |
VertexAttributeVector<Vec>& positions_attribute_vector();
|
236 |
VertexAttributeVector<Vec>& positions_attribute_vector();
|
220 |
|
237 |
|
221 |
/// Return a const reference to the entire positions attribute vector
|
238 |
/// Return a const reference to the entire positions attribute vector
|
222 |
const VertexAttributeVector<Vec>& positions_attribute_vector() const;
|
239 |
const VertexAttributeVector<Vec>& positions_attribute_vector() const;
|
223 |
|
240 |
|
224 |
/// Clear the mesh. Remove all faces, halfedges, and vertices.
|
241 |
/// Clear the mesh. Remove all faces, halfedges, and vertices.
|
225 |
void clear();
|
242 |
void clear();
|
226 |
|
243 |
|
227 |
/// Remove unused items from Mesh, map argument is to be used for attribute vector cleanups in order to maintain sync.
|
244 |
/// Remove unused items from Mesh, map argument is to be used for attribute vector cleanups in order to maintain sync.
|
228 |
void cleanup(IDRemap& map);
|
245 |
void cleanup(IDRemap& map);
|
229 |
/// Remove unused items from Mesh
|
246 |
/// Remove unused items from Mesh
|
230 |
void cleanup();
|
247 |
void cleanup();
|
231 |
|
248 |
|
232 |
/// Returns a Walker to the out halfedge of vertex given by VertexID
|
249 |
/// Returns a Walker to the out halfedge of vertex given by VertexID
|
233 |
Walker walker(VertexID id) const;
|
250 |
Walker walker(VertexID id) const;
|
234 |
/// Returns a Walker to the last halfedge of face given by FaceID
|
251 |
/// Returns a Walker to the last halfedge of face given by FaceID
|
235 |
Walker walker(FaceID id) const;
|
252 |
Walker walker(FaceID id) const;
|
236 |
/// Returns a Walker to the halfedge given by HalfEdgeID
|
253 |
/// Returns a Walker to the halfedge given by HalfEdgeID
|
237 |
Walker walker(HalfEdgeID id) const;
|
254 |
Walker walker(HalfEdgeID id) const;
|
238 |
|
255 |
|
239 |
|
256 |
|
240 |
private:
|
257 |
private:
|
241 |
|
258 |
|
242 |
ConnectivityKernel kernel;
|
259 |
ConnectivityKernel kernel;
|
243 |
|
260 |
|
244 |
VertexAttributeVector<Vec> positions;
|
261 |
VertexAttributeVector<Vec> positions;
|
245 |
|
262 |
|
246 |
// private template for building the manifold from various types
|
263 |
// private template for building the manifold from various types
|
247 |
template<typename size_type, typename float_type, typename int_type>
|
264 |
template<typename size_type, typename float_type, typename int_type>
|
248 |
void build_template(size_type no_vertices,
|
265 |
void build_template(size_type no_vertices,
|
249 |
const float_type* vertvec,
|
266 |
const float_type* vertvec,
|
250 |
size_type no_faces,
|
267 |
size_type no_faces,
|
251 |
const int_type* facevec,
|
268 |
const int_type* facevec,
|
252 |
const int_type* indices);
|
269 |
const int_type* indices);
|
253 |
|
270 |
|
254 |
/// Set the next and prev indices of the first and second argument respectively.
|
271 |
/// Set the next and prev indices of the first and second argument respectively.
|
255 |
void link(HalfEdgeID h0, HalfEdgeID h1);
|
272 |
void link(HalfEdgeID h0, HalfEdgeID h1);
|
256 |
|
273 |
|
257 |
/// Glue halfedges by letting the opp indices point to each other.
|
274 |
/// Glue halfedges by letting the opp indices point to each other.
|
258 |
void glue(HalfEdgeID h0, HalfEdgeID h1);
|
275 |
void glue(HalfEdgeID h0, HalfEdgeID h1);
|
259 |
|
276 |
|
260 |
/// Auxiliary function called from collapse
|
277 |
/// Auxiliary function called from collapse
|
261 |
void remove_face_if_degenerate(HalfEdgeID h);
|
278 |
void remove_face_if_degenerate(HalfEdgeID h);
|
262 |
|
279 |
|
263 |
/// Ensure boundary consistency.
|
280 |
/// Ensure boundary consistency.
|
264 |
void ensure_boundary_consistency(VertexID v);
|
281 |
void ensure_boundary_consistency(VertexID v);
|
265 |
};
|
282 |
};
|
266 |
|
283 |
|
267 |
/** \brief Verify Manifold Integrity
|
284 |
/** \brief Verify Manifold Integrity
|
268 |
Performs a series of tests to chethis that this is a valid manifold.
|
285 |
Performs a series of tests to chethis that this is a valid manifold.
|
269 |
This function is not rigorously constructed but seems to catch all problems so far.
|
286 |
This function is not rigorously constructed but seems to catch all problems so far.
|
270 |
The function returns true if the mesh is valid and false otherwise. */
|
287 |
The function returns true if the mesh is valid and false otherwise. */
|
271 |
bool valid(const Manifold& m);
|
288 |
bool valid(const Manifold& m);
|
272 |
|
289 |
|
273 |
/// Calculate the bounding box of the manifold
|
290 |
/// Calculate the bounding box of the manifold
|
274 |
void bbox(const Manifold& m, Manifold::Vec& pmin, Manifold::Vec& pmax);
|
291 |
void bbox(const Manifold& m, Manifold::Vec& pmin, Manifold::Vec& pmax);
|
275 |
|
292 |
|
276 |
/// Calculate the bounding sphere of the manifold
|
293 |
/// Calculate the bounding sphere of the manifold
|
277 |
void bsphere(const Manifold& m, Manifold::Vec& c, float& r);
|
294 |
void bsphere(const Manifold& m, Manifold::Vec& c, float& r);
|
278 |
|
295 |
|
279 |
/** \brief Test for legal edge collapse.
|
296 |
/** \brief Test for legal edge collapse.
|
280 |
The argument h is the halfedge we want to collapse.
|
297 |
The argument h is the halfedge we want to collapse.
|
281 |
If this function does not return true, it is illegal to collapse h.
|
298 |
If this function does not return true, it is illegal to collapse h.
|
282 |
The reason is that the collapse would violate the manifold property of the mesh.
|
299 |
The reason is that the collapse would violate the manifold property of the mesh.
|
283 |
The test is as follows:
|
300 |
The test is as follows:
|
284 |
1. For the two vertices adjacent to the edge, we generate a list of all their neighbouring vertices.
|
301 |
1. For the two vertices adjacent to the edge, we generate a list of all their neighbouring vertices.
|
285 |
We then generate a list of the vertices that occur in both these lists.
|
302 |
We then generate a list of the vertices that occur in both these lists.
|
286 |
That is, we find all vertices connected by edges to both endpoints of the edge and store these in a list.
|
303 |
That is, we find all vertices connected by edges to both endpoints of the edge and store these in a list.
|
287 |
2. For both faces incident on the edge, chethis whether they are triangular.
|
304 |
2. For both faces incident on the edge, chethis whether they are triangular.
|
288 |
If this is the case, the face will be removed, and it is ok that the the third vertex is connected to both endpoints.
|
305 |
If this is the case, the face will be removed, and it is ok that the the third vertex is connected to both endpoints.
|
289 |
Thus the third vertex in such a face is removed from the list generated in 1.
|
306 |
Thus the third vertex in such a face is removed from the list generated in 1.
|
290 |
3. If the list is now empty, all is well.
|
307 |
3. If the list is now empty, all is well.
|
291 |
Otherwise, there would be a vertex in the new mesh with two edges connecting it to the same vertex. Return false.
|
308 |
Otherwise, there would be a vertex in the new mesh with two edges connecting it to the same vertex. Return false.
|
292 |
4. TETRAHEDRON TEST:
|
309 |
4. TETRAHEDRON TEST:
|
293 |
If the valency of both vertices is three, and the incident faces are triangles, we also disallow the operation.
|
310 |
If the valency of both vertices is three, and the incident faces are triangles, we also disallow the operation.
|
294 |
Reason: A vertex valency of two and two triangles incident on the adjacent vertices makes the construction collapse.
|
311 |
Reason: A vertex valency of two and two triangles incident on the adjacent vertices makes the construction collapse.
|
295 |
5. VALENCY 4 TEST:
|
312 |
5. VALENCY 4 TEST:
|
296 |
If a triangle is adjacent to the edge being collapsed, it disappears.
|
313 |
If a triangle is adjacent to the edge being collapsed, it disappears.
|
297 |
This means the valency of the remaining edge vertex is decreased by one.
|
314 |
This means the valency of the remaining edge vertex is decreased by one.
|
298 |
A valency two vertex reduced to a valency one vertex is considered illegal.
|
315 |
A valency two vertex reduced to a valency one vertex is considered illegal.
|
299 |
6. PREVENT MERGING HOLES:
|
316 |
6. PREVENT MERGING HOLES:
|
300 |
Collapsing an edge with boundary endpoints and valid faces results in the creation where two holes meet.
|
317 |
Collapsing an edge with boundary endpoints and valid faces results in the creation where two holes meet.
|
301 |
A non manifold situation. We could relax this...
|
318 |
A non manifold situation. We could relax this...
|
302 |
7. New test: if the same face is in the one-ring of both vertices but not adjacent to the common edge,
|
319 |
7. New test: if the same face is in the one-ring of both vertices but not adjacent to the common edge,
|
303 |
then the result of a collapse would be a one ring where the same face occurs twice. This is disallowed as the resulting
|
320 |
then the result of a collapse would be a one ring where the same face occurs twice. This is disallowed as the resulting
|
304 |
face would be non-simple. */
|
321 |
face would be non-simple. */
|
305 |
bool precond_collapse_edge(const Manifold& m, HalfEdgeID h);
|
322 |
bool precond_collapse_edge(const Manifold& m, HalfEdgeID h);
|
306 |
|
323 |
|
307 |
/** \brief Test fpr legal edge flip.
|
324 |
/** \brief Test fpr legal edge flip.
|
308 |
Returns false if flipping cannot be performed. This is due to one of following:
|
325 |
Returns false if flipping cannot be performed. This is due to one of following:
|
309 |
1. one of the two adjacent faces is not a triangle.
|
326 |
1. one of the two adjacent faces is not a triangle.
|
310 |
2. Either end point has valency three.
|
327 |
2. Either end point has valency three.
|
311 |
3. The vertices that will be connected already are. */
|
328 |
3. The vertices that will be connected already are. */
|
312 |
bool precond_flip_edge(const Manifold& m, HalfEdgeID h);
|
329 |
bool precond_flip_edge(const Manifold& m, HalfEdgeID h);
|
313 |
|
330 |
|
314 |
/// Returns true if the halfedge is a boundary halfedge.
|
331 |
/// Returns true if the halfedge is a boundary halfedge.
|
315 |
bool boundary(const Manifold& m, HalfEdgeID h);
|
332 |
bool boundary(const Manifold& m, HalfEdgeID h);
|
316 |
|
333 |
|
317 |
/// Return the geometric length of a halfedge.
|
334 |
/// Return the geometric length of a halfedge.
|
318 |
double length(const Manifold& m, HalfEdgeID h);
|
335 |
double length(const Manifold& m, HalfEdgeID h);
|
319 |
|
336 |
|
320 |
/// Returns true if the vertex is a boundary vertex.
|
337 |
/// Returns true if the vertex is a boundary vertex.
|
321 |
bool boundary(const Manifold& m, VertexID v);
|
338 |
bool boundary(const Manifold& m, VertexID v);
|
322 |
|
339 |
|
323 |
/// Compute valency, i.e. number of incident edges.
|
340 |
/// Compute valency, i.e. number of incident edges.
|
324 |
int valency(const Manifold& m, VertexID v);
|
341 |
int valency(const Manifold& m, VertexID v);
|
325 |
|
342 |
|
326 |
/// Compute the vertex normal. This function computes the angle weighted sum of incident face normals.
|
343 |
/// Compute the vertex normal. This function computes the angle weighted sum of incident face normals.
|
327 |
Manifold::Vec normal(const Manifold& m, VertexID v);
|
344 |
Manifold::Vec normal(const Manifold& m, VertexID v);
|
328 |
|
345 |
|
329 |
/// Returns true if the two argument vertices are in each other's one-rings.
|
346 |
/// Returns true if the two argument vertices are in each other's one-rings.
|
330 |
bool connected(const Manifold& m, VertexID v0, VertexID v1);
|
347 |
bool connected(const Manifold& m, VertexID v0, VertexID v1);
|
331 |
|
348 |
|
332 |
/// Compute the number of edges of a face
|
349 |
/// Compute the number of edges of a face
|
333 |
int no_edges(const Manifold& m, FaceID f);
|
350 |
int no_edges(const Manifold& m, FaceID f);
|
334 |
|
351 |
|
335 |
/** Compute the normal of a face. If the face is not a triangle,
|
352 |
/** Compute the normal of a face. If the face is not a triangle,
|
336 |
the normal is not defined, but computed using the first three
|
353 |
the normal is not defined, but computed using the first three
|
337 |
vertices of the face. */
|
354 |
vertices of the face. */
|
338 |
Manifold::Vec normal(const Manifold& m, FaceID f);
|
355 |
Manifold::Vec normal(const Manifold& m, FaceID f);
|
339 |
|
356 |
|
340 |
/// Compute the area of a face.
|
357 |
/// Compute the area of a face.
|
341 |
double area(const Manifold& m, FaceID f);
|
358 |
double area(const Manifold& m, FaceID f);
|
342 |
|
359 |
|
343 |
/// Compute the perimeter of a face.
|
360 |
/// Compute the perimeter of a face.
|
344 |
double perimeter(const Manifold& m, FaceID f);
|
361 |
double perimeter(const Manifold& m, FaceID f);
|
345 |
|
362 |
|
346 |
/// Compute the centre of a face
|
363 |
/// Compute the centre of a face
|
347 |
Manifold::Vec centre(const Manifold& m, FaceID f);
|
364 |
Manifold::Vec centre(const Manifold& m, FaceID f);
|
348 |
|
365 |
|
349 |
/*******************************************************************
|
366 |
/*******************************************************************
|
350 |
* Manifold code
|
367 |
* Manifold code
|
351 |
*******************************************************************/
|
368 |
*******************************************************************/
|
352 |
|
369 |
|
353 |
inline Manifold::Manifold(){}
|
370 |
inline Manifold::Manifold(){}
|
354 |
|
371 |
|
355 |
inline Manifold::Vec& Manifold::pos(VertexID id)
|
372 |
inline Manifold::Vec& Manifold::pos(VertexID id)
|
356 |
{ return positions[id]; }
|
373 |
{ return positions[id]; }
|
357 |
inline const Manifold::Vec& Manifold::pos(VertexID id) const
|
374 |
inline const Manifold::Vec& Manifold::pos(VertexID id) const
|
358 |
{ return positions[id]; }
|
375 |
{ return positions[id]; }
|
359 |
|
376 |
|
360 |
inline VertexAttributeVector<Manifold::Vec>& Manifold::positions_attribute_vector()
|
377 |
inline VertexAttributeVector<Manifold::Vec>& Manifold::positions_attribute_vector()
|
361 |
{
|
378 |
{
|
362 |
return positions;
|
379 |
return positions;
|
363 |
}
|
380 |
}
|
364 |
|
381 |
|
365 |
inline const VertexAttributeVector<Manifold::Vec>& Manifold::positions_attribute_vector() const
|
382 |
inline const VertexAttributeVector<Manifold::Vec>& Manifold::positions_attribute_vector() const
|
366 |
{
|
383 |
{
|
367 |
return positions;
|
384 |
return positions;
|
368 |
}
|
385 |
}
|
369 |
|
386 |
|
370 |
inline void Manifold::clear()
|
387 |
inline void Manifold::clear()
|
371 |
{
|
388 |
{
|
372 |
kernel.clear();
|
389 |
kernel.clear();
|
373 |
positions.clear();
|
390 |
positions.clear();
|
374 |
}
|
391 |
}
|
375 |
|
392 |
|
376 |
inline Walker Manifold::walker(VertexID id) const
|
393 |
inline Walker Manifold::walker(VertexID id) const
|
377 |
{ return Walker(kernel, kernel.out(id)); }
|
394 |
{ return Walker(kernel, kernel.out(id)); }
|
378 |
inline Walker Manifold::walker(FaceID id) const
|
395 |
inline Walker Manifold::walker(FaceID id) const
|
379 |
{ return Walker(kernel, kernel.last(id)); }
|
396 |
{ return Walker(kernel, kernel.last(id)); }
|
380 |
inline Walker Manifold::walker(HalfEdgeID id) const
|
397 |
inline Walker Manifold::walker(HalfEdgeID id) const
|
381 |
{ return Walker(kernel, id); }
|
398 |
{ return Walker(kernel, id); }
|
382 |
|
399 |
|
383 |
|
400 |
|
384 |
inline void Manifold::cleanup(IDRemap& map)
|
401 |
inline void Manifold::cleanup(IDRemap& map)
|
385 |
{
|
402 |
{
|
386 |
kernel.cleanup(map);
|
403 |
kernel.cleanup(map);
|
387 |
positions.cleanup(map.vmap);
|
404 |
positions.cleanup(map.vmap);
|
388 |
}
|
405 |
}
|
389 |
|
406 |
|
390 |
inline void Manifold::cleanup()
|
407 |
inline void Manifold::cleanup()
|
391 |
{
|
408 |
{
|
392 |
IDRemap map;
|
409 |
IDRemap map;
|
393 |
Manifold::cleanup(map);
|
410 |
Manifold::cleanup(map);
|
394 |
}
|
411 |
}
|
395 |
|
412 |
|
396 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(Walker&)> f)
|
413 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(Walker&)> f)
|
397 |
{
|
414 |
{
|
398 |
Walker w = m.walker(v);
|
415 |
Walker w = m.walker(v);
|
399 |
for(; !w.full_circle(); w = w.circulate_vertex_ccw()) f(w);
|
416 |
for(; !w.full_circle(); w = w.circulate_vertex_ccw()) f(w);
|
400 |
return w.no_steps();
|
417 |
return w.no_steps();
|
401 |
}
|
418 |
}
|
402 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(VertexID)> f)
|
419 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(VertexID)> f)
|
403 |
{
|
420 |
{
|
404 |
return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.vertex());});
|
421 |
return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.vertex());});
|
405 |
}
|
422 |
}
|
406 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(FaceID)> f)
|
423 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(FaceID)> f)
|
407 |
{
|
424 |
{
|
408 |
return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.face());});
|
425 |
return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.face());});
|
409 |
}
|
426 |
}
|
410 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(HalfEdgeID)> f)
|
427 |
inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(HalfEdgeID)> f)
|
411 |
{
|
428 |
{
|
412 |
return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.halfedge());});
|
429 |
return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.halfedge());});
|
413 |
}
|
430 |
}
|
414 |
|
431 |
|
415 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(Walker&)> f)
|
432 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(Walker&)> f)
|
416 |
{
|
433 |
{
|
417 |
Walker w = m.walker(v);
|
434 |
Walker w = m.walker(v);
|
418 |
for(; !w.full_circle(); w = w.circulate_vertex_cw()) f(w);
|
435 |
for(; !w.full_circle(); w = w.circulate_vertex_cw()) f(w);
|
419 |
return w.no_steps();
|
436 |
return w.no_steps();
|
420 |
}
|
437 |
}
|
421 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(VertexID)> f)
|
438 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(VertexID)> f)
|
422 |
{
|
439 |
{
|
423 |
return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.vertex());});
|
440 |
return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.vertex());});
|
424 |
}
|
441 |
}
|
425 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(FaceID)> f)
|
442 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(FaceID)> f)
|
426 |
{
|
443 |
{
|
427 |
return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.face());});
|
444 |
return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.face());});
|
428 |
}
|
445 |
}
|
429 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(HalfEdgeID)> f)
|
446 |
inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(HalfEdgeID)> f)
|
430 |
{
|
447 |
{
|
431 |
return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.halfedge());});
|
448 |
return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.halfedge());});
|
432 |
}
|
449 |
}
|
433 |
|
450 |
|
434 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(Walker&)> g)
|
451 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(Walker&)> g)
|
435 |
{
|
452 |
{
|
436 |
Walker w = m.walker(f);
|
453 |
Walker w = m.walker(f);
|
437 |
for(; !w.full_circle(); w = w.circulate_face_ccw()) g(w);
|
454 |
for(; !w.full_circle(); w = w.circulate_face_ccw()) g(w);
|
438 |
return w.no_steps();
|
455 |
return w.no_steps();
|
439 |
}
|
456 |
}
|
440 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(VertexID)> g)
|
457 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(VertexID)> g)
|
441 |
{
|
458 |
{
|
442 |
return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.vertex());});
|
459 |
return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.vertex());});
|
443 |
}
|
460 |
}
|
444 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(FaceID)> g)
|
461 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(FaceID)> g)
|
445 |
{
|
462 |
{
|
446 |
return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.opp().face());});
|
463 |
return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.opp().face());});
|
447 |
}
|
464 |
}
|
448 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(HalfEdgeID)> g)
|
465 |
inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(HalfEdgeID)> g)
|
449 |
{
|
466 |
{
|
450 |
return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.halfedge());});
|
467 |
return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.halfedge());});
|
451 |
}
|
468 |
}
|
452 |
|
469 |
|
453 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(Walker&)> g)
|
470 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(Walker&)> g)
|
454 |
{
|
471 |
{
|
455 |
Walker w = m.walker(f);
|
472 |
Walker w = m.walker(f);
|
456 |
for(; !w.full_circle(); w = w.circulate_face_cw()) g(w);
|
473 |
for(; !w.full_circle(); w = w.circulate_face_cw()) g(w);
|
457 |
return w.no_steps();
|
474 |
return w.no_steps();
|
458 |
}
|
475 |
}
|
459 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(VertexID)> g)
|
476 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(VertexID)> g)
|
460 |
{
|
477 |
{
|
461 |
return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.vertex());});
|
478 |
return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.vertex());});
|
462 |
}
|
479 |
}
|
463 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(FaceID)> g)
|
480 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(FaceID)> g)
|
464 |
{
|
481 |
{
|
465 |
return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.opp().face());});
|
482 |
return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.opp().face());});
|
466 |
}
|
483 |
}
|
467 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(HalfEdgeID)> g)
|
484 |
inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(HalfEdgeID)> g)
|
468 |
{
|
485 |
{
|
469 |
return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.halfedge());});
|
486 |
return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.halfedge());});
|
470 |
}
|
487 |
}
|
471 |
|
488 |
|
472 |
|
489 |
|
473 |
}
|
490 |
}
|
474 |
|
491 |
|