Subversion Repositories gelsvn

Rev

Rev 636 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
595 jab 1
/* ----------------------------------------------------------------------- *
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
3
 * Copyright (C) the authors and DTU Informatics
4
 * For license and list of authors, see ../../doc/intro.pdf
5
 * ----------------------------------------------------------------------- */
39 bj 6
 
595 jab 7
/**
8
 * @file Manifold.h
9
 * @brief The Manifold class is the main data structure of HMesh - the actual mesh.
10
 */
39 bj 11
 
631 janba 12
#pragma once
39 bj 13
 
595 jab 14
#include <algorithm>
601 jab 15
#include "../CGLA/Vec3d.h"
39 bj 16
 
595 jab 17
#include "ConnectivityKernel.h"
18
#include "Iterators.h"
19
#include "Walker.h"
20
#include "AttributeVector.h"
39 bj 21
 
22
 
595 jab 23
namespace Geometry
24
{
25
    // forward declaration
26
    class TriMesh;
27
    class IndexedFaceSet;
28
}
39 bj 29
 
595 jab 30
namespace HMesh
31
{
32
    /** The Manifold class represents a halfedge based mesh. Since meshes based on the halfedge
33
     representation must be manifold (although exceptions could be made) the class is thus named.
34
     Manifold contains many functions for mesh manipulation and associated the position attribute
35
     with vertices.*/
36
 
37
    class Manifold
38
    {
39
    public:
40
 
41
        /// Vector type used for positions of vertices.
42
        typedef CGLA::Vec3d Vec;
43
 
44
        /// Default constructor
45
        Manifold();
39 bj 46
 
595 jab 47
        /** \brief Build a manifold. 
48
        The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces. 
49
        facevecis an array where each entry indicates the number of vertices in that face. 
50
        The array indices contains all the corresponding vertex indices in one concatenated list. */
51
        void build( size_t no_vertices,
52
                    const float* vertvec,
53
                    size_t no_faces,
54
                    const int* facevec,
55
                    const int* indices);
178 bj 56
 
595 jab 57
        /** \brief Build a manifold.
58
         This function is for vertices given in double precision.
59
         The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces.
60
         facevecis an array where each entry indicates the number of vertices in that face.
61
         The array indices contains all the corresponding vertex indices in one concatenated list. */
62
        void build( size_t no_vertices,
63
                   const double* vertvec,
64
                   size_t no_faces,
65
                   const int* facevec,
66
                   const int* indices);
178 bj 67
 
595 jab 68
        /// Build a manifold from a TriMesh
69
        void build(const Geometry::TriMesh& mesh);
70
 
600 jab 71
        /** Add a face to the Manifold.
72
         This function is provided a vector of points in space and transforms it into a single 
73
         polygonal face calling build. It is purely for convenience. */
595 jab 74
        FaceID add_face(std::vector<Manifold::Vec> points);
39 bj 75
 
600 jab 76
        /** Removes a face from the Manifold. If it is an interior face it is simply replaces
77
         by an InvalidFaceID. If the face contains boundary edges, these are removed. Situations
78
         may arise where the mesh is no longer manifold because the situation at a boundary vertex
79
         is not homeomorphic to a half disk. This, we can probably ignore since from the data
80
         structure point of view it is not really a problem that a vertex is incident on two holes - 
81
        a hole can be seen as a special type of face. The function returns false if the FaceID is 
82
         not valid, otherwise the function must complete. */
83
        bool remove_face(FaceID fid);
84
 
85
        /** Remove an edge from the Manifold.
86
            This function will remove the faces on either side and the edge itself in the process. Thus,
87
         it is a simple application of remove_face. */
636 khor 88
        bool remove_edge(HalfEdgeID hid);
600 jab 89
 
90
        /** Remove a vertex from the Manifold.
91
         This function merges all faces around the vertex into one and then removes 
92
         this resulting face. */
93
        bool remove_vertex(VertexID vid);
595 jab 94
 
95
        /// number of  vertices
96
        size_t no_vertices() const { return kernel.no_vertices();}
97
        /// number of active faces
98
        size_t no_faces() const { return kernel.no_faces();}
99
        /// number of active halfedges
100
        size_t no_halfedges() const { return kernel.no_halfedges();}
101
 
102
        /// number of total vertices in kernel
103
        size_t allocated_vertices() const { return kernel.allocated_vertices();}
104
        /// number of total faces in kernel
105
        size_t allocated_faces() const { return kernel.allocated_faces();}
106
        /// number of total halfedges in kernel
107
        size_t allocated_halfedges() const { return kernel.allocated_halfedges();}
108
 
109
        /// check if ID of vertex is in use
110
        bool in_use(VertexID id) const { return kernel.in_use(id);}
111
        /// check if ID of face is in use
112
        bool in_use(FaceID id) const { return kernel.in_use(id);}
113
        /// check if ID of halfedge is in use
114
        bool in_use(HalfEdgeID id) const { return kernel.in_use(id);}
115
 
631 janba 116
        IDIteratorPair<Vertex> vertices() const {return IDIteratorPair<Vertex>(kernel.vertices_begin(),
117
                                                                         kernel.vertices_end());}
118
        IDIteratorPair<Face> faces() const {return IDIteratorPair<Face>(kernel.faces_begin(),
119
                                                                         kernel.faces_end());}
120
        IDIteratorPair<HalfEdge> halfedges() const {return IDIteratorPair<HalfEdge>(kernel.halfedges_begin(),
121
                                                                         kernel.halfedges_end());}
122
 
595 jab 123
        /// Iterator to first VertexID, optional argument defines if unused items should be skipped
124
        VertexIDIterator vertices_begin(bool skip = true) const { return kernel.vertices_begin();}
125
        /// Iterator to first FaceID, optional argument defines if unused items should be skipped
126
        FaceIDIterator faces_begin(bool skip = true) const { return kernel.faces_begin();}
127
        /// Iterator to first HalfEdgeID, optional argument defines if unused items should be skipped
128
        HalfEdgeIDIterator halfedges_begin(bool skip = true) const { return kernel.halfedges_begin();}
129
 
130
        /// Iterator to past the end VertexID
131
        VertexIDIterator vertices_end() const { return kernel.vertices_end();}
132
        /// Iterator topast the end FaceID
133
        FaceIDIterator faces_end() const { return kernel.faces_end();}
134
        /// Iterator to past the end HalfEdgeID
135
        HalfEdgeIDIterator halfedges_end() const {return kernel.halfedges_end(); }  
39 bj 136
 
595 jab 137
 
138
		/** \brief Bridge f0 and f1 by connecting the vertex pairs given in pairs.
139
		 This function creates a cylindrical connection between f0 and f1. f0 and f1 are removed and the vertices 
140
		 given in pairs are connected by edges. The result is a cylindrical connection that changes the genus of the object.
141
 
142
		 This function leaves all error chethising in the hands of the user (for now). The faces clearly should not have any 
143
		 vertices or edges in common as this will create a non-manifold situation. Also the faces should face towards or away 
144
		 from each other and be in a position where it is reasonable to make the bridge. The connections should also make sense 
145
		 from a geometric point of view and should be in a counter clothiswise loop on f0 and a clothiswise loop on f1. No need to 
146
		 connect all vertices.
147
 
148
		 The function returns a vector of HalfEdgeIDs. Those are, of course, the connecting halfedges - also the opposite edges.
149
		 */
150
		std::vector<HalfEdgeID> bridge_faces(FaceID f0, FaceID f1, const std::vector<std::pair<VertexID, VertexID> >& pairs);
39 bj 151
 
152
 
595 jab 153
        /** \brief Collapse the halfedge h.
154
        The argument h is the halfedge being removed. The vertex v=h->opp->vert is the one being removed while h->vert survives.
155
        The final argument indicates whether the surviving vertex should have the average position of the former vertices.
156
        By default false meaning that the surviving vertex retains it position.
157
        This function is not guaranteed to keep the mesh sane unless, precond_collapse_edge has returned true !! */
158
        void collapse_edge(HalfEdgeID h, bool avg_vertices = false);
39 bj 159
 
595 jab 160
        /** \brief Split a face.
161
        The face, f, is split by creating an edge with endpoints v0 and v1 (the next two arguments). 
162
        The vertices of the old face between v0 and v1 (in counter clothiswise order) continue to belong to f. 
163
        The vertices between v1 and v0 belong to the new face. A handle to the new face is returned. */
164
        FaceID split_face_by_edge(FaceID f, VertexID v0, VertexID v1);
39 bj 165
 
595 jab 166
        /** \brief Split a polygon, f, by inserting a vertex at the barycenter.			
167
        This function is less likely to create flipped triangles than the split_face_triangulate function. 
168
        On the other hand, it introduces more vertices and probably makes the triangles more acute.
169
        A handle to the inserted vertex is returned. */
170
        VertexID split_face_by_vertex(FaceID f);
171
       // VertexID split_face_by_vertex(HalfEdgeID h);
39 bj 172
 
595 jab 173
        /** \brief Insert a new vertex on halfedge h.
174
        The new halfedge is insterted as the previous edge to h.
175
        A handle to the inserted vertex is returned. */
176
        VertexID split_edge(HalfEdgeID h);
177
 
178
        /** \brief Stitch two halfedges.
179
         Two boundary halfedges can be stitched together. This can be used to build a complex mesh
180
         from a bunch of simple faces. */
181
        bool stitch_boundary_edges(HalfEdgeID h0, HalfEdgeID h1);
39 bj 182
 
595 jab 183
        /** \brief Merges two faces into a single polygon. 
184
        The first face is f. The second face is adjacent to f along the halfedge h. 
185
        This function returns true if the merging was possible and false otherwise. 
186
        Currently merge only fails if the mesh is already illegal. Thus it should, in fact, never fail. */
187
        bool merge_faces(FaceID f, HalfEdgeID h);
188
 
189
		/** \brief Merge all faces in the one ring of a vertex into a single polygon.
190
		The vertex is given by v.
191
 
192
		The return value is the FaceID of the resulting polygonal face. 
193
		InvalidFaceID is returned if 
194
		- the input vertex is not in use or 
195
		- the input vertex has valence less than two which is a degenerate case.
196
		- the input vertex is a boundary vertex of valence two - i.e. adjacent to just one face.
197
		- the same halfedge appears in two faces of the one ring of the input vertex: I.e.
198
		the input vertex is twice adjacent to the same face!
199
 
200
		Note that this function can create some unusual and arguably degenerate meshes. For instance, 
201
		two triangles which share all vertices is collapsed to a single pair of vertices connected by 
202
		a pair of halfedges bounding the same face. */
203
		FaceID merge_one_ring(VertexID v, float max_loop_length = FLT_MAX);
39 bj 204
 
595 jab 205
        /** \brief Close hole given by the invalid face of halfedgehandle h.
206
         returns FaceID of the created face or the face that is already there if the 
207
         face was not InvalidFaceID. */
208
        FaceID close_hole(HalfEdgeID h);
39 bj 209
 
595 jab 210
        /// \brief Flip an edge h. 
211
        void flip_edge(HalfEdgeID h);
39 bj 212
 
595 jab 213
        /// Return reference to position given by VertexID
214
        Vec& pos(VertexID id);
215
        /// Return const reference to position given by VertexID
216
        const Vec& pos(VertexID id) const;
631 janba 217
 
218
        /// Return a reference to the entire positions attribute vector
219
        VertexAttributeVector<Vec>& positions_attribute_vector();
39 bj 220
 
631 janba 221
        /// Return a const reference to the entire positions attribute vector
222
        const VertexAttributeVector<Vec>& positions_attribute_vector() const;
223
 
595 jab 224
        /// Clear the mesh. Remove all faces, halfedges, and vertices.
225
        void clear();
39 bj 226
 
595 jab 227
        /// Remove unused items from Mesh, map argument is to be used for attribute vector cleanups in order to maintain sync.
228
        void cleanup(IDRemap& map);
229
        /// Remove unused items from Mesh
230
        void cleanup();
231
 
232
        /// Returns a Walker to the out halfedge of vertex given by VertexID
233
        Walker walker(VertexID id) const;
234
        /// Returns a Walker to the last halfedge of face given by FaceID
235
        Walker walker(FaceID id) const;
236
        /// Returns a Walker to the halfedge given by HalfEdgeID
237
        Walker walker(HalfEdgeID id) const;
238
 
39 bj 239
 
595 jab 240
    private:
241
 
242
        ConnectivityKernel kernel;
243
 
244
        VertexAttributeVector<Vec> positions;
39 bj 245
 
595 jab 246
        // private template for building the manifold from various types
247
        template<typename size_type, typename float_type, typename int_type>
248
        void build_template(size_type no_vertices,
249
                            const float_type* vertvec,
250
                            size_type no_faces,
251
                            const int_type* facevec,
252
                            const int_type* indices);
39 bj 253
 
595 jab 254
        /// Set the next and prev indices of the first and second argument respectively.
255
        void link(HalfEdgeID h0, HalfEdgeID h1);
113 jab 256
 
595 jab 257
        /// Glue halfedges by letting the opp indices point to each other.
258
        void glue(HalfEdgeID h0, HalfEdgeID h1);
136 jab 259
 
595 jab 260
        /// Auxiliary function called from collapse
261
        void remove_face_if_degenerate(HalfEdgeID h);
113 jab 262
 
595 jab 263
        /// Ensure boundary consistency.
264
        void ensure_boundary_consistency(VertexID v);
265
    };
113 jab 266
 
595 jab 267
    /** \brief Verify Manifold Integrity
268
    Performs a series of tests to chethis that this is a valid manifold.
269
    This function is not rigorously constructed but seems to catch all problems so far. 
270
    The function returns true if the mesh is valid and false otherwise. */
271
    bool valid(const Manifold& m);
113 jab 272
 
595 jab 273
    /// Calculate the bounding box of the manifold
274
    void bbox(const Manifold& m, Manifold::Vec& pmin, Manifold::Vec& pmax);
113 jab 275
 
595 jab 276
    /// Calculate the bounding sphere of the manifold
277
    void bsphere(const Manifold& m, Manifold::Vec& c, float& r);
113 jab 278
 
595 jab 279
    /** \brief Test for legal edge collapse.
280
    The argument h is the halfedge we want to collapse. 
281
    If this function does not return true, it is illegal to collapse h. 
282
    The reason is that the collapse would violate the manifold property of the mesh.
283
    The test is as follows:
284
    1.  For the two vertices adjacent to the edge, we generate a list of all their neighbouring vertices. 
285
    We then generate a  list of the vertices that occur in both these lists. 
286
    That is, we find all vertices connected by edges to both endpoints of the edge and store these in a list.
287
    2.  For both faces incident on the edge, chethis whether they are triangular. 
288
    If this is the case, the face will be removed, and it is ok that the the third vertex is connected to both endpoints. 
289
    Thus the third vertex in such a face is removed from the list generated in 1.
290
    3.  If the list is now empty, all is well. 
291
    Otherwise, there would be a vertex in the new mesh with two edges connecting it to the same vertex. Return false.
292
    4.  TETRAHEDRON TEST:
293
    If the valency of both vertices is three, and the incident faces are triangles, we also disallow the operation. 
294
    Reason: A vertex valency of two and two triangles incident on the adjacent vertices makes the construction collapse.
295
    5.  VALENCY 4 TEST:
296
    If a triangle is adjacent to the edge being collapsed, it disappears.
297
    This means the valency of the remaining edge vertex is decreased by one.
298
    A valency two vertex reduced to a valency one vertex is considered illegal.
299
    6.  PREVENT MERGING HOLES:
300
    Collapsing an edge with boundary endpoints and valid faces results in the creation where two holes meet.
301
    A non manifold situation. We could relax this...
302
	7. New test: if the same face is in the one-ring of both vertices but not adjacent to the common edge,
303
	then the result of a collapse would be a one ring where the same face occurs twice. This is disallowed as the resulting
304
	 face would be non-simple.	*/
305
    bool precond_collapse_edge(const Manifold& m, HalfEdgeID h);
113 jab 306
 
595 jab 307
    /** \brief Test fpr legal edge flip. 
308
    Returns false if flipping cannot be performed. This is due to one of following: 
309
    1.  one of the two adjacent faces is not a triangle. 
310
    2.  Either end point has valency three.
311
    3.  The vertices that will be connected already are. */
312
    bool precond_flip_edge(const Manifold& m, HalfEdgeID h);
113 jab 313
 
595 jab 314
    /// Returns true if the halfedge is a boundary halfedge.
315
    bool boundary(const Manifold& m, HalfEdgeID h);
113 jab 316
 
595 jab 317
    /// Return the geometric length of a halfedge.
633 janba 318
    double length(const Manifold& m, HalfEdgeID h);
136 jab 319
 
595 jab 320
    /// Returns true if the vertex is a boundary vertex.
321
    bool boundary(const Manifold& m, VertexID v);
133 jab 322
 
595 jab 323
    /// Compute valency, i.e. number of incident edges.
324
    int valency(const Manifold& m, VertexID v);
39 bj 325
 
595 jab 326
    /// Compute the vertex normal. This function computes the angle weighted sum of incident face normals.
327
    Manifold::Vec normal(const Manifold& m, VertexID v);
39 bj 328
 
595 jab 329
    /// Returns true if the two argument vertices are in each other's one-rings.
330
    bool connected(const Manifold& m, VertexID v0, VertexID v1);
39 bj 331
 
595 jab 332
    /// Compute the number of edges of a face
333
    int no_edges(const Manifold& m, FaceID f);
39 bj 334
 
595 jab 335
    /** Compute the normal of a face. If the face is not a triangle,
336
    the normal is not defined, but computed using the first three
337
    vertices of the face. */
338
    Manifold::Vec normal(const Manifold& m, FaceID f);
136 jab 339
 
595 jab 340
    /// Compute the area of a face. 
633 janba 341
    double area(const Manifold& m, FaceID f);
39 bj 342
 
595 jab 343
    /// Compute the perimeter of a face. 
633 janba 344
    double perimeter(const Manifold& m, FaceID f);
39 bj 345
 
595 jab 346
    /// Compute the centre of a face
347
    Manifold::Vec centre(const Manifold& m, FaceID f);
39 bj 348
 
595 jab 349
    /*******************************************************************
350
    * Manifold code
351
    *******************************************************************/
39 bj 352
 
595 jab 353
    inline Manifold::Manifold(){}
39 bj 354
 
595 jab 355
    inline Manifold::Vec& Manifold::pos(VertexID id)
356
    { return positions[id]; }
357
    inline const Manifold::Vec& Manifold::pos(VertexID id) const
358
    { return positions[id]; }
631 janba 359
 
360
    inline VertexAttributeVector<Manifold::Vec>& Manifold::positions_attribute_vector()
361
    {
362
        return positions;
363
    }
364
 
365
    inline const VertexAttributeVector<Manifold::Vec>& Manifold::positions_attribute_vector() const
366
    {
367
        return positions;    
368
    }
39 bj 369
 
595 jab 370
    inline void Manifold::clear()
371
    { 
372
        kernel.clear();
373
        positions.clear();
374
    }
39 bj 375
 
595 jab 376
    inline Walker Manifold::walker(VertexID id) const
377
    { return Walker(kernel, kernel.out(id)); }
378
    inline Walker Manifold::walker(FaceID id) const
379
    { return Walker(kernel, kernel.last(id)); }
380
    inline Walker Manifold::walker(HalfEdgeID id) const
381
    { return Walker(kernel, id); }
39 bj 382
 
178 bj 383
 
595 jab 384
    inline void Manifold::cleanup(IDRemap& map)
385
    {   
386
        kernel.cleanup(map);
387
        positions.cleanup(map.vmap);
388
    }
389
 
390
    inline void Manifold::cleanup()
391
    {
392
        IDRemap map;
393
        Manifold::cleanup(map);
394
    }
631 janba 395
 
633 janba 396
    inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(Walker&)> f)
631 janba 397
    {
633 janba 398
        Walker w = m.walker(v);
399
        for(; !w.full_circle(); w = w.circulate_vertex_ccw()) f(w);
400
        return w.no_steps();
631 janba 401
    }
633 janba 402
    inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(VertexID)> f)
631 janba 403
    {
636 khor 404
        return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.vertex());});
631 janba 405
    }
633 janba 406
    inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(FaceID)> f)
631 janba 407
    {
636 khor 408
        return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.face());});
631 janba 409
    }
633 janba 410
    inline int circulate_vertex_ccw(const Manifold& m, VertexID v, std::function<void(HalfEdgeID)> f)
631 janba 411
    {
636 khor 412
        return circulate_vertex_ccw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.halfedge());});
631 janba 413
    }
414
 
633 janba 415
    inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(Walker&)> f)
631 janba 416
    {
633 janba 417
        Walker w = m.walker(v);
418
        for(; !w.full_circle(); w = w.circulate_vertex_cw()) f(w);
419
        return w.no_steps();
631 janba 420
    }
633 janba 421
    inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(VertexID)> f)
631 janba 422
    {
636 khor 423
        return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.vertex());});
631 janba 424
    }
633 janba 425
    inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(FaceID)> f)
631 janba 426
    {
636 khor 427
        return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.face());});
631 janba 428
    }
633 janba 429
    inline int circulate_vertex_cw(const Manifold& m, VertexID v, std::function<void(HalfEdgeID)> f)
631 janba 430
    {
636 khor 431
        return circulate_vertex_cw(m, v, (std::function<void(Walker&)>)[&](Walker& w){f(w.halfedge());});
631 janba 432
    }
433
 
633 janba 434
    inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(Walker&)> g)
631 janba 435
    {
633 janba 436
        Walker w = m.walker(f);
437
        for(; !w.full_circle(); w = w.circulate_face_ccw()) g(w);
438
        return w.no_steps();
631 janba 439
    }
633 janba 440
    inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(VertexID)> g)
631 janba 441
    {
636 khor 442
        return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.vertex());});
631 janba 443
    }
633 janba 444
    inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(FaceID)> g)
631 janba 445
    {
646 janba 446
        return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.opp().face());});
631 janba 447
    }
633 janba 448
    inline int circulate_face_ccw(const Manifold& m, FaceID f, std::function<void(HalfEdgeID)> g)
631 janba 449
    {
636 khor 450
        return circulate_face_ccw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.halfedge());});
631 janba 451
    }
452
 
633 janba 453
    inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(Walker&)> g)
631 janba 454
    {
633 janba 455
        Walker w = m.walker(f);
456
        for(; !w.full_circle(); w = w.circulate_face_cw()) g(w);
457
        return w.no_steps();
631 janba 458
    }
633 janba 459
    inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(VertexID)> g)
631 janba 460
    {
636 khor 461
        return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.vertex());});
631 janba 462
    }
633 janba 463
    inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(FaceID)> g)
631 janba 464
    {
646 janba 465
        return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.opp().face());});
631 janba 466
    }
633 janba 467
    inline int circulate_face_cw(const Manifold& m, FaceID f, std::function<void(HalfEdgeID)> g)
631 janba 468
    {
636 khor 469
        return circulate_face_cw(m, f, (std::function<void(Walker&)>)[&](Walker& w){g(w.halfedge());});
631 janba 470
    }
471
 
472
 
595 jab 473
}