Subversion Repositories gelsvn

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
30 jab 1
#if !defined(LAPACKFUNC_H_HAA_AGUST_2001)
2
#define LAPACKFUNC_H_HAA_AGUST_2001
3
 
4
 
5
#include "Matrix.h"
6
#include "Vector.h"
7
 
8
namespace LinAlg
9
{
10
 
11
/*!
12
\file LapackFunc.h
13
\brief Interface to some of the LAPACK functionality.
14
 
15
These are functions which more or less directly interface with the
16
Lapack provided algorithms.
17
 
18
For indepth reference to the LAPACK functions see:
19
  LAPACK Users' Guide - 3rd Edition,
20
  by E. Anderson et al.,
21
  ISBN 0-89871-447-8,
22
  Published by SIAM,
23
 
24
This book is also available at: \URL{http://www.netlib.org/lapack/lug/lapack_lug.html}
25
 
26
The official LAPACK sites where from the source can be downloaded are:
27
  \URL{http://www.netlib.org/clapack/} and
28
  \URL{http://www.netlib.org/lapack/}
29
 
30
 
31
NB: When running this in MS Visual C++ it is usually required to set the 
32
multithread "\MD" compiler option. This is to ensure correct linkage to the 
33
precompiled library "clapack.lib" and/or "clapackDB.lib".
34
 
35
 
36
\author  Henrik Aanæs
37
\version Aug 2001
38
*/
39
 
40
/*!
41
\name Singular Value Decomposition SVD 
42
 
43
These functions perform the Singular Value Decomposition SVD of 
44
the MxN matrix A. The SVD is defined by:
45
 
46
  A=U*S*V^T
47
 
48
where:
49
- U is a M by M orthogonal matrix 
50
- V is a N by N orthogonal matrix 
51
- S is a M by N diaggonal matrix. The values in the diagonal are the singular values
52
 
53
 
54
\param  A the matrix to perform SVD on  
55
\return U will be resized if it is does not have the correct dimensions
56
\return V will be resized if it is does not have the correct dimensions
57
\return S will be resized if it is does not have the correct dimensions. 
58
\exception assert(info==0) for Lapack. Add a throw statement later.
59
\version  Aug 2001 
60
\author  Henrik Aanæs
61
*/  
62
//@{ 
63
///SVD of A, where the singular values are returned in a Vector.
64
void SVD(const CMatrix& A,CMatrix& U,CVector& s,CMatrix& V);
65
///SVD of A, where the singular values are returned in a 'diagonal' Matrix.
66
void SVD(const CMatrix& A,CMatrix& U,CMatrix& S,CMatrix& V);
67
///SVD of A, returning only the singular values in a Vector.
68
CVector SVD(const CMatrix& A);
69
//@}
70
 
71
 
72
/*!
73
\name Linear Equations
74
These functions solve the system of linear equations
75
 
76
  A*x=b 
77
 
78
for x, where:
79
- A is a N by N matrix 
80
- b is a N vector
81
- x is a N vector
82
 
83
There a speceilaized functions for symetric positive definite (SPD) 
84
matrices yeilding better performance. These are denote by SPD in 
85
there function name.
86
 
87
\param A the NxN square matrix
88
\param b the N vector
89
\return x will be resized if it is does not have the correct dimensions
90
\exception assert(info==0) for Lapack. Add a throw statement later.
91
\exception assert(A.Row()==A.Col()). Add a throw statement later.
92
\exception assert(A.Row()==b.Length()). Add a throw statement later.
93
\version  Aug 2001 
94
\author  Henrik Aanæs
95
*/  
96
//@{
97
///Solves Ax=b for x.
98
void LinearSolve(const CMatrix& A,const CVector&b,CVector& x);
99
///Solves Ax=b for x and returns x.
100
CVector LinearSolve(const CMatrix& A,const CVector&b);
101
///Solves Ax=b for x, where A is SPD.
102
void LinearSolveSPD(const CMatrix& A,const CVector&b,CVector& x);
103
///Solves Ax=b for x and returns x, where A is SPD.
104
CVector LinearSolveSPD(const CMatrix& A,const CVector&b);
105
//@}
106
 
107
void LinearSolveSym(const CMatrix& A,
108
										const CVector&b,
109
										CVector& x);
110
 
111
/**
112
\name Linear Least Squares
113
These functions solve the Linear Least Squares problem:
114
 
115
  min_x ||Ax-b||^2
116
 
117
for x, where:
118
- || || denotes the 2-norm
119
- A	is a M by N matrix. For a well formed M>=N and rank (A)=N. See below.
120
- b	is a M vector.
121
- x	is a N vector 
122
 
123
If the solution is not \em well \em formed the algorithm provided will find a
124
solution, x, which is not unique, but which sets the objective function
125
to 0. The reson being that the underlining algorithm works by SVD.
126
 
127
\param A the MxN matrix
128
\param b the M vector
129
\return x will be resized if it is does not have the correct dimensions
130
\exception assert(info==0) for Lapack. Add a throw statement later.
131
\exception assert(A.Rows()==b.Length());. Add a throw statement later.
132
\version  Aug 2001 
133
\author  Henrik Aanæs
134
*/  
135
//@{
136
///Solves the Linear Least Squares problem min_x ||Ax=b||^2 for x.
137
void LinearLSSolve(const CMatrix& A,const CVector&b,CVector& x);
138
///Solves the Linear Least Squares problem min_x ||Ax=b||^2 for x, and returnes x.
139
CVector LinearLSSolve(const CMatrix& A,const CVector&b);
140
//@}
141
 
142
/**
143
\name Matrix Inversion
144
These functions inverts the square matrix A. This matrix A must have
145
full rank. 
146
\param A square matrix
147
\return InvA the invers of A for one instance.
148
\exception assert(info==0) for Lapack. This wil among others happen if A is rank deficient. Add a throw statement later. 
149
\exception assert(A.Rows()==A.Cols()). Add a throw statement later.
150
\version  Aug 2001 
151
\author  Henrik Aanæs
152
*/  
153
//@{
154
///Invertes the square matrix A. That is here A is altered as opposed to the other Invert functions.
155
void Invert(CMatrix& A);
156
/// Returns the inverse of the square matrix A in InvA.
157
void Inverted(const CMatrix& A,CMatrix& InvA);
158
/// Returns the inverse of the square matrix A.
159
CMatrix Inverted(const CMatrix& A);
160
//@}
161
 
162
 
163
/**
164
\name QR Factorization
165
This function returns the QR factorization of A, such that Q*R=A where 
166
Q is a orthonormal matrix and R is an upper triangular matrix. However, 
167
in the case of A.Col()>A.Row(), the last A.Col-A.Row columns of Q are 
168
'carbage' and as such not part of a orthonormal matrix.
169
 \param A  the input matrix
170
\return Q an orthonormal matrix. (See above)
171
\return R an upper triangular matrix.
172
\exception assert(info==0) for Lapack. This wil among others happen if A is rank deficient. Add a throw statement later. 
173
\exception assert(A.Rows()>0 && A.Cols()>0). Add a throw statement later.
174
\version  Aug 2001 
175
\author  Henrik Aanæs
176
*/ 
177
//@{ 
178
void QRfact(const CMatrix& A,CMatrix& Q, CMatrix& R);
179
//@}
180
 
181
 
182
/**
183
\name RQ Factorization
184
This function returns the RQ factorization of A, such that R*Q=A where 
185
Q is a orthonormal matrix and R is an upper triangular matrix. However, 
186
in the case of A not beeing a square matrix, there might be some fuck up of Q.
187
 \param A  the input matrix
188
\return Q an orthonormal matrix. (See above)
189
\return R an upper triangular matrix.
190
\exception assert(info==0) for Lapack. This wil among others happen if A is rank deficient. Add a throw statement later. 
191
\exception assert(A.Rows()>0 && A.Cols()>0). Add a throw statement later.
192
\version  Aug 2001 
193
\author  Henrik Aanæs
194
*/ 
195
//@{ 
196
void RQfact(const CMatrix& A,CMatrix& R, CMatrix& Q);
197
//@}
198
 
199
}
200
 
201
#endif // !defined(LAPACKFUNC_H_HAA_AGUST_2001)