Subversion Repositories gelsvn

Rev

Rev 299 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
304 jab 1
#include "CGLA/Vec3d.h"
2
#include "Geometry/TriMesh.h"
3
 
4
#include "BSPTree.h"
5
 
6
using namespace std;
7
using namespace CGLA;
8
 
9
namespace Geometry
10
{
11
  int BSPTree::node_calls;
12
  int BSPTree::tri_calls;
13
 
14
  void create_tri_accel(Vec3f A, Vec3f B, Vec3f C, TriAccel &tri_accel) 
15
  {
16
    Vec3f N = normalize(cross(B-A, C-A));
17
    // Find projection dir
18
    int k,u,v;
19
    if (fabs(N[0]) > fabs(N[1]))
20
      if (fabs(N[0]) > fabs(N[2])) 
21
	k = 0; /* X */ 
22
      else 
23
	k=2;   /* Z */
24
    else
25
      if (fabs(N[1]) > fabs(N[2])) 
26
	k = 1; /* Y */ 
27
      else 
28
	k=2;   /* Z */
29
 
30
    u = (k+1)% 3; 
31
    v = (k+2)% 3;
32
 
33
    Vec3f b = C - A;
34
    Vec3f c = B - A;
35
 
36
    double div = (b[u]*c[v]-b[v]*c[u]);
37
 
38
    tri_accel.n_u = N[u]/N[k];
39
    tri_accel.n_v = N[v]/N[k];
40
    tri_accel.n_d = dot(A, N/N[k]);
41
    tri_accel.k = k;
42
 
43
    tri_accel.b_nu = -b[v]/div;
44
    tri_accel.b_nv = b[u]/div;
45
    tri_accel.b_d = (b[v]*A[u]-b[u]*A[v])/div;
46
 
47
    tri_accel.c_nu = c[v]/div;
48
    tri_accel.c_nv = -c[u]/div;
49
    tri_accel.c_d = (c[u]*A[v]-c[v]*A[u])/div;
50
  }
51
 
52
  // Most of this file is a direct copy from Henrik's notes
53
  BSPTree::BSPTree() 
54
  {
55
    root=0;
56
    b_is_build = false;
57
  }
58
 
59
  BSPTree::~BSPTree() 
60
  {
61
    clear();		
62
  }
63
 
64
  void BSPTree::clear() 
65
  {
66
    if (root!=0) 
67
    {
68
      delete_node(root);
69
      root=0;
70
      b_is_build=false;
71
    }
72
    isecttris.clear();
73
    all_objects.clear();
74
    all_triaccel.clear();
75
  }
76
 
77
  void BSPTree::delete_node(BSPNode *node) 
78
  {
79
    if (node->left!=0)
80
      delete_node(node->left);
81
    if (node->right!=0)
82
      delete_node(node->right);
83
    delete node;
84
  }
85
 
86
  void BSPTree::subdivide_node(BSPNode &node, BBox &bbox, 
87
			       unsigned int level, 
88
			       vector<ISectTri*>& objects, 
89
			       vector<TriAccel*>& tri_objects) 
90
  {
91
    const int TESTS = 2;
92
 
93
    if (objects.size()<=max_objects || level==max_level) 
94
    {
95
      node.axis_leaf = 4; // Means that this is a leaf
96
      node.plane = 0;
97
      node.left = 0;
98
      node.right = 0;
99
      node.id = all_objects.size();
100
      node.count = objects.size();
101
 
102
      for(unsigned int i = 0; i < objects.size(); ++i) 
103
      {
104
	all_objects.push_back(objects[i]);
105
	all_triaccel.push_back(tri_objects[i]);
106
      }  
107
    } 
108
    else 
109
    {
110
      bool right_zero=false;
111
      bool left_zero=false;
112
      unsigned int i;
113
      BSPNode* left_node  = new BSPNode();
114
      BSPNode* right_node = new BSPNode();
115
      vector<ISectTri*> left_objects;
116
      vector<ISectTri*> right_objects;
117
      vector<TriAccel*> tri_left_objects;
118
      vector<TriAccel*> tri_right_objects;
119
 
120
      node.left = left_node;
121
      node.right = right_node;
122
      //node.is_leaf = false;
123
 
124
      // Make test on all three axis
125
      int new_axis=-1;
126
      double min_cost=CGLA::BIG;
127
      int new_pos = -1;      
128
/*
129
       float max_size=0;
130
       for(i=0;i<3;i++) {
131
         if (bbox.max_corner[i]-bbox.min_corner[i]>max_size) {
132
	   max_size = bbox.max_corner[i]-bbox.min_corner[i];
133
	   new_axis=i;
134
	   new_pos = 1;
135
	 }
136
       }
137
*/
138
      unsigned int j;		
139
 
140
      for(i=0;i<3;i++) 
141
      {
142
	for(int k=1;k<TESTS;k++) 
143
	{
144
	  BBox left_bbox = bbox;
145
	  BBox right_bbox = bbox;
146
 
147
	  double center = (bbox.max_corner[i]- bbox.min_corner[i])*(double)k/(double)TESTS+bbox.min_corner[i];
148
	  node.plane = center;
149
 
150
	  left_bbox.max_corner[i] = center; 
151
	  right_bbox.min_corner[i] = center; 
152
	  // Try putting the triangles in the left and right boxes
153
	  int left_count = 0;
154
	  int right_count = 0;
155
	  for(j=0;j<objects.size();j++) 
156
	  {
157
	    ISectTri* tri = objects[j];
158
	    if (left_bbox.intersect_triangle(*tri)) 
159
	      left_count++;
160
	    if (right_bbox.intersect_triangle(*tri)) 
161
	      right_count++;
162
	  }
163
 
164
	  if ((double)left_count*left_bbox.area()+(double)right_count*right_bbox.area()<min_cost) 
165
	  {
166
	    min_cost = (double)left_count*left_bbox.area()+(double)right_count*right_bbox.area();
167
	    new_axis=i;
168
	    new_pos = k;
169
	    if (right_count==0)
170
	      right_zero=true;
171
	    else
172
	      right_zero=false;
173
	    if (left_count==0)
174
	      left_zero=true;
175
	    else
176
	      left_zero=false;	    
177
	  }
178
	}
179
      }
180
      node.axis_leaf = new_axis;
181
      //	node.axis_leaf = level %3;
182
      left_node->axis_leaf = -1; //(node.axis + 1)%3;
183
      right_node->axis_leaf = -1; //(node.axis + 1)%3;
184
      // Now chose the right splitting plane
185
      BBox left_bbox = bbox;
186
      BBox right_bbox = bbox;
187
 
188
      double center = (bbox.max_corner[node.axis_leaf]- bbox.min_corner[node.axis_leaf])*(double)new_pos/(double)TESTS+bbox.min_corner[node.axis_leaf];
189
 
190
      // This doesn't help that much
191
      if (left_zero) 
192
      {
193
//			cout << "Old left center: " << center;
194
	// Find min position af alle trekanter og placer center der
195
	center = bbox.max_corner[node.axis_leaf];
196
	for(j=0;j<objects.size();j++) 
197
	{
198
	  ISectTri* tri = objects[j];
199
	  if (tri->point0[node.axis_leaf]<center)
200
	    center=tri->point0[node.axis_leaf];
201
	  if (tri->point1[node.axis_leaf]<center)
202
	    center=tri->point1[node.axis_leaf];
203
	  if (tri->point2[node.axis_leaf]<center)
204
	    center=tri->point2[node.axis_leaf];
205
	}
206
//			cout << "new left center: " << center << endl;
207
      }
208
      if (right_zero) 
209
      {
210
//			cout << "Old right center: " << center;
211
	// Find min position af alle trekanter og placer center der
212
	center = left_bbox.min_corner[node.axis_leaf];
213
	for(j=0;j<objects.size();j++) 
214
	{
215
	  ISectTri* tri = objects[j];
216
	  if (tri->point0[node.axis_leaf]>center)
217
	    center=tri->point0[node.axis_leaf];
218
	  if (tri->point1[node.axis_leaf]>center)
219
	    center=tri->point1[node.axis_leaf];
220
	  if (tri->point2[node.axis_leaf]>center)
221
	    center=tri->point2[node.axis_leaf];
222
	}
223
//			cout << "new right center: " << center << endl;
224
      }
225
 
226
      node.plane = center;
227
      left_bbox.max_corner[node.axis_leaf] = center+f_eps; 
228
      right_bbox.min_corner[node.axis_leaf] = center-f_eps; 
229
 
230
 
231
		// Now put the triangles in the right and left node
232
      for(i=0;i<objects.size();i++) 
233
      {
234
	ISectTri* tri = objects[i];
235
	TriAccel *tri_accel = tri_objects[i];
236
	if (left_bbox.intersect_triangle(*tri)) 
237
	{
238
	  left_objects.push_back(tri);
239
	  tri_left_objects.push_back(tri_accel);
240
	}
241
	if (right_bbox.intersect_triangle(*tri)) 
242
	{
243
	  right_objects.push_back(tri);
244
	  tri_right_objects.push_back(tri_accel);
245
	}
246
      }
247
/*	if (left_zero||right_zero) {
248
			cout << left_objects.size() << "," << right_objects.size() << endl;
249
		}
250
*/
251
      objects.clear();
252
      subdivide_node(*left_node , left_bbox , level+1, left_objects, tri_left_objects);
253
      subdivide_node(*right_node, right_bbox, level+1, right_objects, tri_right_objects);
254
    }
255
  }
256
 
257
  void BSPTree::init() 
258
  {
259
    root = new BSPNode();
260
    bbox.compute_bbox(isecttris);
261
    bbox.min_corner-=Vec3f(f_eps*100,f_eps*100,f_eps*100);
262
    bbox.max_corner+=Vec3f(f_eps*100,f_eps*100,f_eps*100);
263
  }
264
 
265
  void BSPTree::init(vector<TriMesh*>& _trimesh, 
266
		     vector<Mat4x4f>& _transforms, 
267
		     int _max_objects, int _max_level) 
268
  {
269
    trimesh = _trimesh;
270
    transforms = _transforms;
271
    for(unsigned int i=0;i<trimesh.size();i++) 
272
    {
273
      TriMesh *mesh = trimesh[i];
274
      // Loop through all triangles and add them to intersection structure
275
      for(int j=0;j<mesh->geometry.no_faces();j++) 
276
      {
277
	Vec3i face = mesh->geometry.face(j);
278
	ISectTri new_tri;
279
	new_tri.point0 = transforms[i].mul_3D_point(mesh->geometry.vertex(face[0]));
280
	new_tri.point1 = transforms[i].mul_3D_point(mesh->geometry.vertex(face[1]));
281
	new_tri.point2 = transforms[i].mul_3D_point(mesh->geometry.vertex(face[2]));
282
	new_tri.edge0 = new_tri.point1 - new_tri.point0;
283
	new_tri.edge1 = new_tri.point2 - new_tri.point0;
284
	new_tri.mesh_id = i;
285
	new_tri.tri_id = j;
286
	isecttris.push_back(new_tri);
287
	TriAccel ta;
288
	create_tri_accel(new_tri.point0, new_tri.point1, new_tri.point2, ta);
289
	ta.mesh_id = i;
290
	ta.tri_id = j;
291
	triaccel.push_back(ta);
292
      }
293
    }
294
 
295
    max_objects = _max_objects;
296
    max_level = _max_level;
297
    init();
298
  }
299
 
300
  void BSPTree::init(TriMesh* mesh, Mat4x4f transform, 
301
		     vector<int> &trilist, 
302
		     int _max_objects, int _max_level) 
303
  {
304
    trimesh.push_back(mesh);
305
    transforms.push_back(transform);
306
    // Loop through all triangles and add them to intersection structure
307
    for(unsigned int j=0;j<trilist.size();j++) 
308
    {
309
      Vec3i face = mesh->geometry.face(trilist[j]);
310
      ISectTri new_tri;
311
      new_tri.point0 = transform.mul_3D_point(mesh->geometry.vertex(face[0]));
312
      new_tri.point1 = transform.mul_3D_point(mesh->geometry.vertex(face[1]));
313
      new_tri.point2 = transform.mul_3D_point(mesh->geometry.vertex(face[2]));
314
      new_tri.edge0 = new_tri.point1 - new_tri.point0;
315
      new_tri.edge1 = new_tri.point2 - new_tri.point0;
316
      new_tri.mesh_id = 0;
317
      new_tri.tri_id = trilist[j];
318
      isecttris.push_back(new_tri);
319
      TriAccel ta;
320
      create_tri_accel(new_tri.point0, new_tri.point1, new_tri.point2, ta);
321
      ta.mesh_id = 0;
322
      ta.tri_id = trilist[j];
323
      triaccel.push_back(ta);
324
    }
325
 
326
    max_objects = _max_objects;
327
    max_level = _max_level;
328
    init();
329
  }
330
 
331
  void BSPTree::build() 
332
  {
333
    if (!b_is_build) 
334
    {
335
      vector<ISectTri*> objects;
336
      vector<TriAccel*> tri_objects;
337
      for(unsigned int i=0;i<isecttris.size();i++) 
338
      {
339
	ISectTri& tri = isecttris[i];
340
	TriAccel& tri_accel = triaccel[i];
341
	objects.push_back(&tri);
342
	tri_objects.push_back(&tri_accel);
343
      }
344
      subdivide_node(*root, bbox, 0, objects, tri_objects);
345
      b_is_build = true;
346
    }
347
    isecttris.clear();
348
    all_objects.clear();
349
    make_fast_tree(root);
350
  }
351
 
352
  bool BSPTree::is_build() 
353
  {
354
    return b_is_build;
355
  }
356
 
357
  void BSPTree::print(BSPNode *node, int depth) 
358
  {
359
    if (node==0)
360
      return;
361
    for(int i=0;i<depth;i++)
362
      cout << " ";
363
//	cout << "axis:" << node->axis_leaf << ", count:" << node->objects.size() << ", plane:" << node->plane << ", " << endl;
364
    print(node->left, depth+1);
365
    print(node->right, depth+1);
366
  }
367
 
368
  int BSPTree::size(BSPNode *node) 
369
  {
370
    if (node==0)
371
      return 0;
372
    int s = sizeof(BSPNode);
373
    s+= node->count * sizeof(ISectTri);
374
    s+=size(node->left);
375
    s+=size(node->right);
376
    return s;
377
  }
378
 
379
  int BSPTree::size() 
380
  {
381
    return size(root);
382
  }
383
 
384
/*__declspec(align(16))*/ static const unsigned int modulo[] = {0,1,2,0,1};
385
 
386
  inline bool intersect2(Ray &ray, const TriAccel &acc, double t_max) 
387
  {
388
//	cout << "Acc: " << (int)&acc << " ";
389
//inline bool Intersect(TriAccel &acc,Ray &ray)
390
#define ku modulo[acc.k+1]
391
#define kv modulo[acc.k+2]
392
    // don’t prefetch here, assume data has already been prefetched
393
    // start high-latency division as early as possible
394
    const double nd = 1.0/((double)ray.direction[acc.k]	+ (double)acc.n_u * (double)ray.direction[ku] + (double)acc.n_v * (double)ray.direction[kv]);
395
    const double f = ((double)acc.n_d - (double)ray.origin[acc.k]	- (double)acc.n_u * (double)ray.origin[ku] - (double)acc.n_v * (double)ray.origin[kv]) * nd;
396
    // check for valid distance.
397
    if (!(t_max > f && f > f_eps)||ray.dist<f) return false;
398
    // compute hitpoint positions on uv plane
399
    const double hu = (ray.origin[ku] + f * ray.direction[ku]);
400
    const double hv = (ray.origin[kv] + f * ray.direction[kv]);
401
    // check first barycentric coordinate
402
    const double lambda = (hu * (double)acc.b_nu + hv * (double)acc.b_nv + (double)acc.b_d);
403
    if (lambda < 0.0) return false;
404
    // check second barycentric coordinate
405
    const double mue = (hu * (double)acc.c_nu + hv * (double)acc.c_nv + (double)acc.c_d);
406
    if (mue < 0.0) return false;
407
    // check third barycentric coordinate
408
    if (lambda+mue > 1.0) return false;
409
    // have a valid hitpoint here. store it.
410
    ray.dist = f;
411
    ray.u = lambda;
412
    ray.v = mue;
413
    ray.hit_object = (TriMesh*)acc.mesh_id;
414
    ray.hit_face_id = acc.tri_id;
415
    ray.has_hit=true;
416
    return true;
417
  }
418
 
419
  bool BSPTree::intersect_node(Ray &ray, const BSPNode &node, double t_min, double t_max) const 
420
  {
421
    //cout << node.plane << endl;
422
    node_calls++;
423
    static bool found;
424
    static int i;
425
 
426
    if (node.axis_leaf==4) 
427
    {
428
      found = false; 
429
      for(i=0;i<node.count;i++) 
430
      {
431
//	const TriAccel* tri2 = all_triaccel[node.id+i];
432
	const ISectTri* tri = all_objects[node.id+i];
433
//			if (intersect2(ray, *tri2, t_max))  
434
//				found=true;
435
	if (intersect(ray, *tri, t_max))  
436
	  found=true;
437
      }
438
      if (found)
439
	return true;
440
      else 
441
	return false;
442
    } 
443
    else 
444
    {
445
      BSPNode *near_node;
446
      BSPNode *far_node;
447
      if (ray.direction[node.axis_leaf]>=0) 
448
      {
449
	near_node = node.left;
450
	far_node = node.right;
451
      } 
452
      else 
453
      {
454
	near_node = node.right;
455
	far_node = node.left;
456
      }
457
 
458
      // In order to avoid instability
459
      double t;
460
      if (fabs(ray.direction[node.axis_leaf])<d_eps)
461
	t = (node.plane - ray.origin[node.axis_leaf])/d_eps;// intersect node plane;
462
      else
463
	t = (node.plane - ray.origin[node.axis_leaf])/ray.direction[node.axis_leaf];// intersect node plane;
464
 
465
      if (t>t_max) 
466
      	return intersect_node(ray, *near_node, t_min, t_max);
467
 
468
      else if (t<t_min) 
469
	return intersect_node(ray, *far_node, t_min, t_max);
470
      else 
471
      {
472
	if (intersect_node(ray, *near_node, t_min, t))
473
	  return true;
474
	else 
475
	  return intersect_node(ray, *far_node, t, t_max);
476
      }
477
    }
478
  }
479
 
480
  bool BSPTree::intersect(Ray &ray) const 
481
  {
482
    double t_min, t_max;
483
    bbox.intersect_min_max(ray, t_min, t_max);
484
    if (t_min>t_max)
485
      return false;
486
    if (!intersect_node(ray, *root, t_min, t_max))
487
      return false;
488
//	cout << "____" << endl;
489
//	ray.reset();
490
//	cout << "Here " << endl;
491
//	intersect_fast_node(ray, &fast_tree[0], t_min, t_max);
492
//	if (!ray.has_hit)
493
//		return false;
494
    else 
495
    {
496
      // Calculate the normal at the intersection
497
      ray.hit_object = trimesh[(int)ray.hit_object];
498
      Vec3i face = ray.hit_object->normals.face(ray.hit_face_id);
499
      Vec3f normal0 = ray.hit_object->normals.vertex(face[0]);
500
      Vec3f normal1 = ray.hit_object->normals.vertex(face[1]);
501
      Vec3f normal2 = ray.hit_object->normals.vertex(face[2]);
502
      ray.hit_normal = normalize(normal0*(1 - ray.u - ray.v)
503
				 +normal1*ray.u
504
				 +normal2*ray.v);
505
      ray.hit_pos = ray.origin + ray.direction*ray.dist;
506
      return true;
507
    }
508
  }
509
 
510
  const int MAX_DEPTH=25;
511
 
512
  void BSPTree::make_fast_tree(BSPNode *node) 
513
  {
514
    fast_tree.resize(1000000); // 
515
    FastBSPNode f_node;
516
    fast_tree.push_back(f_node);
517
    push_fast_bsp_node(node,0);
518
  }
519
 
520
  void BSPTree::push_fast_bsp_node(BSPNode *node, int id) 
521
  {
522
    if (node->axis_leaf==4)  // It is a leaf
523
    {
524
      fast_tree[id].leaf.flagAndOffset = (unsigned int)1<<31 | (unsigned int)(&all_triaccel[node->id]);
525
      fast_tree[id].leaf.count = node->count;
526
    } 
527
    else // It is an inner node
528
    { 
529
      FastBSPNode fnode;
530
      int p_l = fast_tree.size();
531
      fast_tree.push_back(fnode); // left
532
      fast_tree.push_back(fnode); // right
533
      push_fast_bsp_node(node->left, p_l);
534
      push_fast_bsp_node(node->right, p_l+1);
535
      fast_tree[id].inner.flagAndOffset = (unsigned int) &fast_tree[p_l] | node->axis_leaf;
536
      fast_tree[id].inner.splitCoordinate = node->plane;
537
      node->ref = fast_tree[id].inner.flagAndOffset;
538
    }
539
  }
540
 
541
#define ABSP_ISLEAF(n)       (n->inner.flagAndOffset & (unsigned int)1<<31)
542
#define ABSP_DIMENSION(n)    (n->inner.flagAndOffset & 0x3)
543
#define ABSP_OFFSET(n)       (n->inner.flagAndOffset & (0x7FFFFFFC))
544
#define ABSP_NEARNODE(n)     (FastBSPNode*)(ray.direction[dimension]>=0?ABSP_OFFSET(node):ABSP_OFFSET(node)+sizeof(*node))
545
#define ABSP_FARNODE(n)      (FastBSPNode*)(ray.direction[dimension]>=0?ABSP_OFFSET(node)+sizeof(*node):ABSP_OFFSET(node))
546
#define ABSP_TRIANGLENODE(n) (vector<TriAccel*>::iterator)(n->flagAndOffset & (0x7FFFFFFF))
547
 
548
  struct Stack 
549
  {
550
    FastBSPNode *node;
551
    double t_min;
552
    double t_max;
553
  };
554
 
555
  inline void IntersectAlltrianglesInLeaf(const BSPLeaf* leaf, Ray &ray, double t_max) {
556
    TriAccel** tri_acc_ptr = reinterpret_cast<TriAccel**>(leaf->flagAndOffset & (0x7FFFFFFF));
557
    vector<TriAccel*>::iterator acc(tri_acc_ptr);
558
//	vector<TriAccel*>::iterator acc = ABSP_TRIANGLENODE(leaf);
559
    for(unsigned int i=0;i<leaf->count;++i)
560
      intersect2(ray, *(*acc++), t_max);
561
  }
562
 
563
  void BSPTree::intersect_fast_node(Ray &ray, const FastBSPNode *node, double t_min, double t_max) const 
564
  {
565
    Stack stack[MAX_DEPTH];
566
    int stack_id=0;
567
    double t;
568
    // Precalculate one over dir
569
    double one_over_dir[3];
570
    for(int i=0;i<3;i++) 
571
    {
572
      if (ray.direction[i]!=0)
573
	one_over_dir[i]=1.0/ray.direction[i];
574
      else
575
	one_over_dir[i]=1.0/d_eps;
576
    }
577
 
578
    int dimension;
579
    while(1) 
580
    {
581
      while(!ABSP_ISLEAF(node)) 
582
      {
583
	dimension = ABSP_DIMENSION(node);
584
	t = (node->inner.splitCoordinate - ray.origin[dimension])*one_over_dir[dimension];
585
	if (t>=t_max) 
586
	  node = ABSP_NEARNODE(node);
587
	else if (t<=t_min)
588
	  node = ABSP_FARNODE(node);
589
	else 
590
	{
591
	  // Stack push
592
	  stack[stack_id].node = ABSP_FARNODE(node);
593
	  stack[stack_id].t_min = t;
594
	  stack[stack_id++].t_max = t_max;
595
	  // Set current node to near side
596
	  node = ABSP_NEARNODE(node);
597
	  t_max = t;
598
	}
599
      }
600
 
601
      IntersectAlltrianglesInLeaf(&node->leaf, ray, t_max);
602
      if (ray.dist<t_max)
603
	return;
604
      if (stack_id==0)
605
	return;
606
      // Stack pop
607
 
608
      node = stack[--stack_id].node;
609
      t_min = stack[stack_id].t_min;
610
      t_max = stack[stack_id].t_max;
611
    }
612
  }
613
 
614
  bool BSPTree::intersect(Ray &ray, const ISectTri &isecttri, double t_max) const 
615
  {
616
    tri_calls++;
617
    // This is the Möller-Trumbore method
618
    static Vec3d direction; // = Vec3d(ray.direction);
619
    static Vec3d origin; // = Vec3d(ray.direction);
620
    static Vec3d edge1; // = Vec3d(ray.direction);
621
    static Vec3d edge0; // = Vec3d(ray.direction);
622
    static Vec3d point0; // = Vec3d(ray.direction);
623
    static Vec3d p;
624
    static Vec3d q;
625
    static Vec3d s;
626
    static Vec3f point;
627
    static double a, f, u, v, t;
628
    static double ray_dist_sq;
629
 
630
    static double dist_sq;
631
 
632
    static Vec3f found_point;
633
 
634
    direction.set((double)ray.direction[0], (double)ray.direction[1], (double)ray.direction[2]);
635
    edge0.set((double)isecttri.edge0[0], (double)isecttri.edge0[1], (double)isecttri.edge0[2]);
636
    edge1.set((double)isecttri.edge1[0], (double)isecttri.edge1[1], (double)isecttri.edge1[2]);
637
 
638
// Ray-tri intersection
639
//		const double eps = 0.001f;
640
/********* Complain!!!!!!!!!!!!!!!! *****************/		
641
	//p = cross(direction, edge1);
642
	// Why the &%¤/ is this so much faster????? - Because of MS Compiler - the intel compiler does it right!!
643
    p.set(direction[1] * edge1[2] - direction[2] * edge1[1], 
644
	  direction[2] * edge1[0] - direction[0] * edge1[2], 
645
	  direction[0] * edge1[1] - direction[1] * edge1[0]);
646
/****************************************************/
647
    a = dot(edge0,p);
648
    if (a>-d_eps && a<d_eps)
649
      return false;
650
  // Just delay these 
651
    origin.set((double)ray.origin[0], (double)ray.origin[1], (double)ray.origin[2]);
652
    point0.set((double)isecttri.point0[0], (double)isecttri.point0[1], (double)isecttri.point0[2]);
653
 
654
    f = 1.0/a;
655
    s = origin - point0;
656
    u = f*dot(s,p);
657
    if (u<0.0 || u>1.0)
658
      return false;
659
/********* Complain!!!!!!!!!!!!!!!! *****************/		
660
  //q = cross(s, edge0);
661
  // Why the &%¤/ is this so much faster?????
662
    q.set(s[1] * edge0[2] - s[2] * edge0[1], 
663
	  s[2] * edge0[0] - s[0] * edge0[2], 
664
	  s[0] * edge0[1] - s[1] * edge0[0]);
665
/****************************************************/
666
 
667
    v = f * dot(direction, q);  
668
    if (v<0.0 || u+v>1.0)
669
      return false;
670
    t = f*dot(edge1, q);
671
    if (t<0)
672
      return false;
673
    if (fabs(t)<d_eps)
674
      return false;
675
    if (t_max<t)
676
      return false;
677
    point = ray.origin + ray.direction*t;
678
 
679
    dist_sq = dot(point-ray.origin, point-ray.origin);
680
    ray_dist_sq = ray.dist * ray.dist;
681
 
682
    if (dist_sq<f_eps)
683
      return false;
684
    if (dist_sq>ray_dist_sq)
685
      return false;
686
 
687
    ray.dist = sqrt(dist_sq);
688
    ray.u = u;
689
    ray.v = v;
690
    ray.hit_object = (TriMesh*)isecttri.mesh_id;
691
    ray.hit_face_id = isecttri.tri_id;
692
    ray.has_hit=true;
693
    return true; 
694
  }
695
}