Subversion Repositories gelsvn

Rev

Rev 403 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
403 jab 1
/*
2
 *  curvature.cpp
3
 *  GEL
4
 *
5
 *  Created by J. Andreas Bærentzen on 23/09/08.
6
 *  Copyright 2008 __MyCompanyName__. All rights reserved.
7
 *
8
 */
9
 
10
#include "curvature.h"
11
 
12
#include <GLGraphics/gel_glut.h>
13
 
14
#include <iostream>
15
#include <CGLA/eigensolution.h>
16
#include <CGLA/Vec2d.h>
17
#include <CGLA/Vec3d.h>
18
#include <CGLA/Mat3x3d.h>
19
#include <CGLA/Mat2x2d.h>
20
#include <CGLA/Mat2x3d.h>
21
 
22
#include <HMesh/VertexCirculator.h>
23
#include <HMesh/FaceCirculator.h>
24
#include <HMesh/x3d_save.h>
25
#include <HMesh/x3d_load.h>
26
#include <HMesh/obj_load.h>
27
#include <HMesh/build_manifold.h>
28
#include <HMesh/mesh_optimization.h>
29
 
30
#include <LinAlg/Matrix.h>
31
#include <LinAlg/Vector.h>
32
#include <LinAlg/LapackFunc.h>
33
 
34
using namespace std;
35
using namespace HMesh;
36
using namespace LinAlg;
37
using namespace CGLA;
38
 
39
namespace {
40
	double scal = 0.001;
41
	double vector_scal = 0.001;
42
 
43
	template<class T> 
44
	void smooth_something_on_mesh(Manifold& m, vector<T>& vec, int smooth_steps)
45
	{
46
		for(int iter=0;iter<smooth_steps;++iter)
47
		{
48
			vector<T> new_vec(m.no_vertices());
49
			for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi)
50
			{
51
				int i = vi->touched;
52
				new_vec[i] = vec[i];
53
				for(VertexCirculator vc(vi); !vc.end();++vc)
54
				{
55
					int j = vc.get_vertex()->touched;
56
					new_vec[i] += vec[j];
57
				}
58
				new_vec[i] /=(valency(vi)+ 1.0);
59
			}
60
			swap(vec,new_vec);
61
		}		
62
	}
63
}
64
 
65
double voronoi_area(VertexIter v)
66
{
67
	double area_mixed = 0;
68
	//For each triangle T from the 1-ring neighborhood of x
69
	for(VertexCirculator vc(v); !vc.end(); ++vc)
70
	{
71
		FaceIter f = vc.get_face();
72
		double f_area = area(f);
73
 
74
		HalfEdgeIter he = vc.get_halfedge();
75
		Vec3d v1(he->vert->pos);
76
		Vec3d v2(he->next->vert->pos);
77
		Vec3d v0(he->next->next->vert->pos);
78
 
79
		double a0 = acos(dot(v1-v0, v2-v0)/(length(v1-v0)*length(v2-v0)));
80
		double a1 = acos(dot(v2-v1, v0-v1)/(length(v2-v1)*length(v0-v1)));
81
		double a2 = acos(dot(v0-v2, v1-v2)/(length(v0-v2)*length(v1-v2)));
82
 
83
		if(a0>(M_PI/2.0) && a1>(M_PI/2.0) && a2>(M_PI/2.0)) // f is non-obtuse
84
		{
85
			// Add Voronoi formula (see Section 3.3)
86
			area_mixed += (1.0/8) * 
87
			((1.0/tan(a1)) * sqr_length(v2-v0) + 
88
			 (1.0/tan(a2)) * sqr_length(v1-v0));
89
		}
90
		else // Voronoi inappropriate
91
		{
92
			// Add either area(f)/4 or area(f)/2
93
			if(a0>M_PI/2.0)// the angle of f at x is obtuse
94
				area_mixed += f_area/2;
95
			else
96
				area_mixed += f_area/4;
97
		}
98
	}
99
	return area_mixed;
100
}
101
 
102
double barycentric_area(VertexIter v)
103
{
104
	double barea = 0;
105
	//For each triangle T from the 1-ring neighborhood of x
106
	for(VertexCirculator vc(v); !vc.end(); ++vc)
107
	{
108
		FaceIter f = vc.get_face();
109
		barea += area(f)/3.0;
110
	}
111
	return barea;
112
}
113
 
412 jab 114
void unnormalized_mean_curvature_normal(VertexIter v, Vec3d& curv_normal, double& w_sum)
403 jab 115
{
116
	if(!is_boundary(v))
117
	{
118
		Vec3d vertex(v->pos);
412 jab 119
		curv_normal = Vec3d(0);
120
		w_sum = 0;
403 jab 121
		for(VertexCirculator vc(v); !vc.end(); ++vc)
122
		{
123
			HalfEdgeIter h = vc.get_halfedge();
124
			Vec3d nbr(h->vert->pos);
125
			Vec3d left(h->next->vert->pos);
126
			Vec3d right(h->opp->prev->opp->vert->pos);
127
 
128
			double d_left = dot(normalize(nbr-left),
129
								normalize(vertex-left));
130
			double d_right = dot(normalize(nbr-right),
131
								 normalize(vertex-right));
132
			double a_left  = acos(min(1.0, max(-1.0, d_left)));
133
			double a_right = acos(min(1.0, max(-1.0, d_right)));
134
 
135
			double w = 1.0/tan(a_left) + 1.0/tan(a_right);
136
 
137
			curv_normal += w * (vertex-nbr);
412 jab 138
			w_sum += w;
403 jab 139
		}
140
	}
141
}
142
 
412 jab 143
const Vec3d mean_curvature_normal(VertexIter v)
144
{
145
	Vec3d curv_normal;
146
	double w_sum;
147
	unnormalized_mean_curvature_normal(v, curv_normal, w_sum);
148
 
149
	return curv_normal / (4*voronoi_area(v));
150
}
151
 
403 jab 152
double sum_curvatures(Manifold& m, vector<double>& curvature)
153
{
154
	double sum = 0;
155
	for(VertexIter v=m.vertices_begin(); v!=m.vertices_end(); ++v)
156
	{
157
		if(!is_boundary(v))
158
		{
159
			sum += curvature[v->touched] * voronoi_area(v);
160
		}
161
	}
162
	return sum;
163
}
164
 
165
 
166
const double gaussian_curvature_angle_defect(VertexIter v)
167
{
168
	if(!is_boundary(v))
169
	{
170
		Vec3f vertex(v->pos);
171
		vector<Vec3d> edges;
172
		for(VertexCirculator vc(v); !vc.end(); ++vc)
173
		{
174
			Vec3d e(normalize(vc.get_vertex()->pos-vertex));
175
			edges.push_back(e);
176
		}
177
		int N=edges.size();
178
		double angle_sum = 0;
179
		for(int i=0;i<N;++i)
180
		{
181
			double dot_prod = 
182
			s_max(-1.0, s_min(1.0, dot(edges[i],edges[(i+1)%N])));
183
			angle_sum += acos(dot_prod);
184
		}
185
		return (2*M_PI - angle_sum)/voronoi_area(v);
186
	}
187
	return 0;
188
}
189
 
190
const Mat3x3d curvature_tensor(HalfEdgeIter h)
191
{
192
	if(!is_boundary(h))
193
	{
194
		Vec3d edge(h->vert->pos - h->opp->vert->pos);
195
		double edge_len = length(edge);
196
		edge /= edge_len;
197
 
198
		Vec3d h_norm(normal(h->face));
199
		Vec3d h_opp_norm(normal(h->opp->face));
200
 
201
		Vec3d nc = cross(h_norm, h_opp_norm);
202
 
203
		double sign = (dot(nc, edge) >= 0) ? 1 : -1;
204
		double beta = asin(nc.length());
205
 
206
		Mat3x3d m;
207
		outer_product(edge, edge, m);
208
		return sign * edge_len * beta * m;
209
	}
210
	return Mat3x3d(0);
211
}
212
 
213
const Mat3x3d curvature_tensor_from_edges(VertexIter v)
214
{
215
	Mat3x3d curv_tensor(0);
216
 
217
	if(!is_boundary(v))
218
	{
219
		for(VertexCirculator vc(v); !vc.end(); ++vc)
220
		{
221
			curv_tensor += 0.5*curvature_tensor(vc.get_halfedge());
222
		}
223
		curv_tensor /= voronoi_area(v);
224
	}
225
	return curv_tensor;
226
}
227
 
228
 
229
void curvature_tensor_paraboloid(VertexIter v,
230
								 Mat2x2d& curv_tensor,
231
								 Mat3x3d& frame)
232
{
233
	if(!is_boundary(v))
234
	{
235
		// First estimate the normal and compute a transformation matrix
236
		// which takes us into tangent plane coordinates.
237
		Vec3d Norm = Vec3d(normal(v));
238
		Vec3d X,Y;
239
		orthogonal(Norm,X,Y);
240
		frame = Mat3x3d(X,Y,Norm);
241
		Vec3d centre(v->pos);
242
 
243
		vector<Vec3d> points;
244
		for(VertexCirculator vc(v); !vc.end(); ++vc)
245
			points.push_back(Vec3d(vc.get_vertex()->pos));
246
 
247
		int N = points.size();
248
 
249
		CVector b(N);
250
		// Compute the matrix of parameter values
251
		CMatrix PMat(N, 3);
252
		for(int i=0;i<N;++i)
253
		{
254
			Vec3d p = frame * (points[i]-centre);
255
			b[i] = p[2];
256
 
257
			PMat.set(i,0,0.5*sqr(p[0]));
258
			PMat.set(i,1,p[0]*p[1]);
259
			PMat.set(i,2,0.5*sqr(p[1]));
260
		}
261
 
262
		// Compute the coefficients of the polynomial surface
263
		CVector x(3);
264
		x = LinearLSSolve(PMat,b);
265
		if(isnan(x[0])) cout << __LINE__ << " " << PMat << b << endl ;
266
 
267
		// Finally compute the shape tensor from the coefficients
268
		// using the first and second fundamental forms.
269
		curv_tensor =Mat2x2d(x[0],x[1],x[1],x[2]);
270
	}
271
}
272
 
273
void curvature_tensors_from_edges(Manifold& m, 
274
								  vector<Mat3x3d>& curvature_tensors)
275
{
276
	curvature_tensors.resize(m.no_vertices());
277
	int i=0;
278
	for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi,++i)
279
	{
280
		vi->touched = i;
281
		curvature_tensors[i] = curvature_tensor_from_edges(vi);
282
	}
283
}
284
 
285
void smooth_curvature_tensors(Manifold& m,																	
286
							  vector<Mat3x3d>& curvature_tensors)
287
{
288
	assert(curvature_tensors.size() == m.no_vertices());
289
	vector<Mat3x3d> tmp_curvature_tensors(m.no_vertices());
290
	double tmp_area;
291
	int i=0;
292
	for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi,++i)
293
		if(!is_boundary(vi))
294
		{
295
			double a = voronoi_area(vi);
296
			tmp_curvature_tensors[i] = curvature_tensors[i] * a;
297
			tmp_area = a;
298
			int n=1;
299
			for(VertexCirculator vc(vi); !vc.end(); ++vc)
300
				if(!is_boundary(vc.get_vertex()))
301
				{
302
					int j = vc.get_vertex()->touched;
303
					double a = voronoi_area(vc.get_vertex());
304
					tmp_curvature_tensors[i] += curvature_tensors[j]*a;
305
					tmp_area += a;
306
					++n;
307
				}
308
			tmp_curvature_tensors[i] /= tmp_area;
309
		}
310
	curvature_tensors = tmp_curvature_tensors;
311
}
312
 
313
void gaussian_curvature_angle_defects(Manifold& m,
314
									  vector<double>& curvature,
315
									  int smooth_steps)
316
{
317
	m.enumerate_vertices();
318
	curvature.resize(m.no_vertices());
319
	for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi)
320
	{
321
		int i = vi->touched;
322
		curvature[i] = gaussian_curvature_angle_defect(vi);
323
	}
324
	smooth_something_on_mesh(m, curvature, smooth_steps);
325
}
326
 
327
void mean_curvatures(Manifold& m, vector<double>& curvature,int smooth_steps)
328
{
329
	curvature.resize(m.no_vertices());
330
	int i=0;
331
	for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi,++i)
332
	{
333
		vi->touched = i;
334
		Vec3d N = mean_curvature_normal(vi);
335
		curvature[i] = length(N)*sign(dot(N,Vec3d(normal(vi))));
336
	}	
337
	smooth_something_on_mesh(m, curvature, smooth_steps);	
338
}
339
 
340
 
341
void curvature_paraboloids(Manifold& m,
342
						   vector<Vec3d>& min_curv_direction,
343
						   vector<Vec3d>& max_curv_direction,
344
						   vector<double>& curvature)
345
{
346
	int i=0;
347
	for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi,++i)
348
	{
349
		vi->touched = i;
350
		Mat2x2d tensor;
351
		Mat3x3d frame;
352
		curvature_tensor_paraboloid(vi, tensor, frame);
353
 
354
		Mat2x2d Q,L;
355
		int s = power_eigensolution(tensor, Q, L);
356
 
357
		if(s<2)	
358
			cout << tensor << Q << L << endl;
359
 
360
		int max_idx=0;
361
		int min_idx=1;
362
 
363
		if(fabs(L[max_idx][max_idx])<fabs(L[min_idx][min_idx])) swap(max_idx, min_idx);
364
 
365
		Mat3x3d frame_t = transpose(frame);
366
 
367
		max_curv_direction[i] = 
368
		frame_t * Vec3d(Q[max_idx][0], Q[max_idx][1], 0);
369
 
370
		min_curv_direction[i] = 
371
		frame_t * Vec3d(Q[min_idx][0], Q[min_idx][1], 0);
372
 
373
		curvature[i] = L[0][0]*L[1][1];
374
	}
375
}
376
 
377
 
378
void curvature_from_tensors(Manifold& m,
379
							const vector<Mat3x3d>& curvature_tensors,
380
							vector<Vec3d>& min_curv_direction,
381
							vector<Vec3d>& max_curv_direction,
382
							vector<double>& curvature)
383
{
384
	assert(curvature_tensors.size() == m.no_vertices());
385
	min_curv_direction.resize(m.no_vertices());
386
	max_curv_direction.resize(m.no_vertices());
387
	curvature.resize(m.no_vertices());
388
	double max_val = -1e30;
389
	for(VertexIter vi=m.vertices_begin(); vi != m.vertices_end(); ++vi)
390
	{
391
		int i = vi->touched;
392
		Mat3x3d C,Q,L;
393
		C = curvature_tensors[i];
394
		int s = power_eigensolution(C, Q, L);
395
		Vec3d dmin, dmax;
396
		if(s==0)
397
		{
398
			Vec3d n(normal(vi));
399
			orthogonal(n,dmin, dmax);
400
			curvature[i] = 0;
401
			cout << " rank 0 " << endl;
402
		}
403
		else if(s==1)
404
		{
405
			Vec3d n(normal(vi));
406
			dmin = normalize(Q[0]);
407
			dmax = cross(n, dmin);
408
			curvature[i] = 0;
409
			cout << " rank 1 " << endl;
410
		}
411
		else
412
		{
413
			/*				Vec3d l(fabs(L[0][0]), fabs(L[1][1]), fabs(L[2][2]));
414
 
415
			 int z_idx=2;
416
			 if(s==3)
417
			 {
418
			 if(l[0] < l[1])
419
			 z_idx = l[0]<l[2] ? 0 : 2;
420
			 else
421
			 z_idx = l[1]<l[2] ? 1 : 2;
422
			 }
423
			 int max_idx = (z_idx + 1) % 3;
424
			 int min_idx = (z_idx + 2) % 3;
425
 
426
			 if(l[max_idx] < l[min_idx]) swap(max_idx, min_idx);
427
			 */
428
			int max_idx = 0;
429
			int min_idx = 1;
430
			// Yes - the biggest eigenvalue corresponds to the min direction
431
			// and vice versa.
432
			dmin = normalize(Q[max_idx]);
433
			dmax = normalize(Q[min_idx]);
434
 
435
			curvature[i] = L[max_idx][max_idx]*L[min_idx][min_idx];
436
 
437
		}
438
		min_curv_direction[i] = dmin;
439
		max_curv_direction[i] = dmax;
440
		max_val = max(fabs(curvature[i]), max_val);
441
 
442
	}
443
	scal = 1.0/max_val;
444
}
445