303 |
bj |
1 |
#ifndef __CGLA_ARITHQUAT_H__
|
|
|
2 |
#define __CGLA_ARITHQUAT_H__
|
|
|
3 |
|
|
|
4 |
#include "CGLA.h"
|
382 |
jab |
5 |
#include "ArithVecFloat.h"
|
323 |
bj |
6 |
#include "ArithSqMatFloat.h"
|
303 |
bj |
7 |
#include <cmath>
|
|
|
8 |
|
|
|
9 |
namespace CGLA {
|
|
|
10 |
|
|
|
11 |
/** \brief A T based Quaterinion class.
|
|
|
12 |
|
|
|
13 |
Quaternions are algebraic entities useful for rotation. */
|
|
|
14 |
|
|
|
15 |
template<class T, class V, class Q>
|
|
|
16 |
class ArithQuat
|
|
|
17 |
{
|
|
|
18 |
public:
|
|
|
19 |
|
|
|
20 |
/// Vector part of quaternion
|
|
|
21 |
V qv;
|
|
|
22 |
|
|
|
23 |
/// Scalar part of quaternion
|
|
|
24 |
T qw;
|
|
|
25 |
|
|
|
26 |
/// Construct undefined quaternion
|
|
|
27 |
#ifndef NDEBUG
|
|
|
28 |
ArithQuat() : qw(CGLA_INIT_VALUE) {}
|
|
|
29 |
#else
|
|
|
30 |
ArithQuat() {}
|
|
|
31 |
#endif
|
|
|
32 |
|
|
|
33 |
/// Construct quaternion from vector and scalar
|
|
|
34 |
ArithQuat(const V& imaginary, T real = 1.0f) : qv(imaginary) , qw(real) {}
|
|
|
35 |
|
|
|
36 |
/// Construct quaternion from four scalars
|
|
|
37 |
ArithQuat(T x, T y, T z, T _qw) : qv(x,y,z), qw(_qw) {}
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
/// Assign values to a quaternion
|
|
|
41 |
void set(const V& imaginary, T real=1.0f)
|
|
|
42 |
{
|
|
|
43 |
qv = imaginary;
|
|
|
44 |
qw = real;
|
|
|
45 |
}
|
|
|
46 |
|
|
|
47 |
void set(T x, T y, T z, T _qw)
|
|
|
48 |
{
|
|
|
49 |
qv.set(x,y,z);
|
|
|
50 |
qw = _qw;
|
|
|
51 |
}
|
|
|
52 |
|
|
|
53 |
/*void set(const Vec4f& v)
|
|
|
54 |
{
|
|
|
55 |
qv.set(v[0], v[1], v[2]);
|
|
|
56 |
qw = v[3];
|
|
|
57 |
}*/
|
|
|
58 |
|
|
|
59 |
/// Get values from a quaternion
|
|
|
60 |
void get(T& x, T& y, T& z, T& _qw) const
|
|
|
61 |
{
|
|
|
62 |
x = qv[0];
|
|
|
63 |
y = qv[1];
|
|
|
64 |
z = qv[2];
|
|
|
65 |
_qw = qw;
|
|
|
66 |
}
|
|
|
67 |
|
|
|
68 |
/// Get imaginary part of a quaternion
|
|
|
69 |
V get_imaginary_part() const { return qv; }
|
|
|
70 |
|
|
|
71 |
/// Get real part of a quaternion
|
|
|
72 |
T get_real_part() const { return qw; }
|
|
|
73 |
|
|
|
74 |
|
|
|
75 |
|
|
|
76 |
/// Obtain angle of rotation and axis
|
|
|
77 |
void get_rot(T& angle, V& v)
|
|
|
78 |
{
|
|
|
79 |
angle = 2*std::acos(qw);
|
|
|
80 |
|
|
|
81 |
if(angle < TINY)
|
|
|
82 |
v = V(static_cast<T>(1.0), static_cast<T>(0.0), static_cast<T>(0.0));
|
|
|
83 |
else
|
|
|
84 |
v = qv*(static_cast<T>(1.0)/std::sin(angle));
|
|
|
85 |
|
|
|
86 |
if(angle > M_PI)
|
|
|
87 |
v = -v;
|
|
|
88 |
|
|
|
89 |
v.normalize();
|
|
|
90 |
}
|
|
|
91 |
|
|
|
92 |
/// Construct a Quaternion from an angle and axis of rotation.
|
|
|
93 |
void make_rot(T angle, const V& v)
|
|
|
94 |
{
|
|
|
95 |
angle /= static_cast<T>(2.0);
|
|
|
96 |
qv = CGLA::normalize(v)*std::sin(angle);
|
|
|
97 |
qw = std::cos(angle);
|
|
|
98 |
}
|
|
|
99 |
|
|
|
100 |
/** Construct a Quaternion rotating from the direction given
|
|
|
101 |
by the first argument to the direction given by the second.*/
|
|
|
102 |
void make_rot(const V& s,const V& t)
|
|
|
103 |
{
|
|
|
104 |
T tmp = std::sqrt(2*(1 + dot(s, t)));
|
|
|
105 |
qv = cross(s, t)*(1.0/tmp);
|
|
|
106 |
qw = tmp/2.0;
|
|
|
107 |
}
|
|
|
108 |
|
323 |
bj |
109 |
/// Construct a Quaternion from a rotation matrix.
|
|
|
110 |
template <class VT, class MT, unsigned int ROWS>
|
|
|
111 |
void make_rot(ArithSqMatFloat<VT,MT,ROWS>& m)
|
|
|
112 |
{
|
|
|
113 |
assert(ROWS==3 || ROWS==4);
|
|
|
114 |
T trace = m[0][0] + m[1][1] + m[2][2] + static_cast<T>(1.0);
|
|
|
115 |
|
|
|
116 |
//If the trace of the matrix is greater than zero, then
|
|
|
117 |
//perform an "instant" calculation.
|
|
|
118 |
if ( trace > TINY )
|
|
|
119 |
{
|
|
|
120 |
T S = sqrt(trace) * static_cast<T>(2.0);
|
|
|
121 |
qv = V(m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1] );
|
|
|
122 |
qv /= S;
|
|
|
123 |
qw = static_cast<T>(0.25) * S;
|
|
|
124 |
}
|
|
|
125 |
else
|
|
|
126 |
{
|
|
|
127 |
//If the trace of the matrix is equal to zero (or negative...) then identify
|
|
|
128 |
//which major diagonal element has the greatest value.
|
|
|
129 |
//Depending on this, calculate the following:
|
|
|
130 |
|
|
|
131 |
if ( m[0][0] > m[1][1] && m[0][0] > m[2][2] ) { // Column 0:
|
|
|
132 |
T S = sqrt( static_cast<T>(1.0) + m[0][0] - m[1][1] - m[2][2] ) * static_cast<T>(2.0);
|
|
|
133 |
qv[0] = 0.25f * S;
|
|
|
134 |
qv[1] = (m[1][0] + m[0][1] ) / S;
|
|
|
135 |
qv[2] = (m[0][2] + m[2][0] ) / S;
|
|
|
136 |
qw = (m[2][1] - m[1][3] ) / S;
|
|
|
137 |
} else if ( m[1][1] > m[2][2] ) { // Column 1:
|
|
|
138 |
T S = sqrt( 1.0 + m[1][1] - m[0][0] - m[2][2] ) * 2.0;
|
|
|
139 |
qv[0] = (m[1][0] + m[0][1] ) / S;
|
|
|
140 |
qv[1] = 0.25 * S;
|
|
|
141 |
qv[2] = (m[2][1] + m[1][2] ) / S;
|
|
|
142 |
qw = (m[0][2] - m[2][0] ) / S;
|
|
|
143 |
} else { // Column 2:
|
|
|
144 |
T S = sqrt( 1.0 + m[2][2] - m[0][0] - m[1][1] ) * 2.0;
|
|
|
145 |
qv[0] = (m[0][2] + m[2][0] ) / S;
|
|
|
146 |
qv[1] = (m[2][1] + m[1][2] ) / S;
|
|
|
147 |
qv[2] = 0.25 * S;
|
|
|
148 |
qw = (m[1][0] - m[0][1] ) / S;
|
|
|
149 |
}
|
|
|
150 |
}
|
|
|
151 |
//The quaternion is then defined as:
|
|
|
152 |
// Q = | X Y Z W |
|
|
|
153 |
}
|
|
|
154 |
|
303 |
bj |
155 |
//----------------------------------------------------------------------
|
|
|
156 |
// Binary operators
|
|
|
157 |
//----------------------------------------------------------------------
|
|
|
158 |
|
|
|
159 |
bool operator==(const ArithQuat<T,V,Q>& q) const
|
|
|
160 |
{
|
|
|
161 |
return qw == q.qw && qv == q.qv;
|
|
|
162 |
}
|
|
|
163 |
|
|
|
164 |
bool operator!=(const ArithQuat<T,V,Q>& q) const
|
|
|
165 |
{
|
|
|
166 |
return qw != q.qw || qv != q.qv;
|
|
|
167 |
}
|
|
|
168 |
|
|
|
169 |
/// Multiply two quaternions. (Combine their rotation)
|
|
|
170 |
Q operator*(const ArithQuat<T,V,Q>& q) const
|
|
|
171 |
{
|
|
|
172 |
return Q(cross(qv, q.qv) + qv*q.qw + q.qv*qw,
|
|
|
173 |
qw*q.qw - dot(qv, q.qv));
|
|
|
174 |
}
|
|
|
175 |
|
|
|
176 |
/// Multiply scalar onto quaternion.
|
|
|
177 |
Q operator*(T scalar) const
|
|
|
178 |
{
|
|
|
179 |
return Q(qv*scalar, qw*scalar);
|
|
|
180 |
}
|
|
|
181 |
|
|
|
182 |
/// Add two quaternions.
|
|
|
183 |
Q operator+(const ArithQuat<T,V,Q>& q) const
|
|
|
184 |
{
|
|
|
185 |
return Q(qv + q.qv, qw + q.qw);
|
|
|
186 |
}
|
|
|
187 |
|
|
|
188 |
//----------------------------------------------------------------------
|
|
|
189 |
// Unary operators
|
|
|
190 |
//----------------------------------------------------------------------
|
|
|
191 |
|
|
|
192 |
/// Compute the additive inverse of the quaternion
|
|
|
193 |
Q operator-() const { return Q(-qv, -qw); }
|
|
|
194 |
|
|
|
195 |
/// Compute norm of quaternion
|
|
|
196 |
T norm() const { return dot(qv, qv) + qw*qw; }
|
|
|
197 |
|
|
|
198 |
/// Return conjugate quaternion
|
|
|
199 |
Q conjugate() const { return Q(-qv, qw); }
|
|
|
200 |
|
|
|
201 |
/// Compute the multiplicative inverse of the quaternion
|
|
|
202 |
Q inverse() const { return Q(conjugate()*(1/norm())); }
|
|
|
203 |
|
|
|
204 |
/// Normalize quaternion.
|
|
|
205 |
Q normalize() { return Q((*this)*(1/norm())); }
|
|
|
206 |
|
|
|
207 |
//----------------------------------------------------------------------
|
|
|
208 |
// Application
|
|
|
209 |
//----------------------------------------------------------------------
|
|
|
210 |
|
|
|
211 |
/// Rotate vector according to quaternion
|
|
|
212 |
V apply(const V& vec) const
|
|
|
213 |
{
|
|
|
214 |
return ((*this)*Q(vec)*inverse()).qv;
|
|
|
215 |
}
|
|
|
216 |
|
|
|
217 |
/// Rotate vector according to unit quaternion
|
|
|
218 |
V apply_unit(const V& vec) const
|
|
|
219 |
{
|
427 |
jrf |
220 |
assert(fabs(norm() - 1.0) < SMALL);
|
303 |
bj |
221 |
return ((*this)*Q(vec)*conjugate()).qv;
|
|
|
222 |
}
|
|
|
223 |
};
|
|
|
224 |
|
|
|
225 |
template<class T, class V, class Q>
|
|
|
226 |
inline Q operator*(T scalar, const ArithQuat<T,V,Q>& q)
|
|
|
227 |
{
|
|
|
228 |
return q*scalar;
|
|
|
229 |
}
|
|
|
230 |
|
|
|
231 |
/** Perform linear interpolation of two quaternions.
|
|
|
232 |
The last argument is the parameter used to interpolate
|
|
|
233 |
between the two first. SLERP - invented by Shoemake -
|
|
|
234 |
is a good way to interpolate because the interpolation
|
|
|
235 |
is performed on the unit sphere.
|
|
|
236 |
*/
|
|
|
237 |
template<class T, class V, class Q>
|
|
|
238 |
inline Q slerp(const ArithQuat<T,V,Q>& q0, const ArithQuat<T,V,Q>& q1, T t)
|
|
|
239 |
{
|
|
|
240 |
T angle = std::acos(q0.qv[0]*q1.qv[0] + q0.qv[1]*q1.qv[1]
|
|
|
241 |
+ q0.qv[2]*q1.qv[2] + q0.qw*q1.qw);
|
|
|
242 |
return (q0*std::sin((1 - t)*angle) + q1*std::sin(t*angle))*(1/std::sin(angle));
|
|
|
243 |
}
|
|
|
244 |
|
|
|
245 |
/// Print quaternion to stream.
|
|
|
246 |
template<class T, class V, class Q>
|
|
|
247 |
inline std::ostream& operator<<(std::ostream&os, const ArithQuat<T,V,Q>& v)
|
|
|
248 |
{
|
|
|
249 |
os << "[ ";
|
|
|
250 |
for(unsigned int i=0;i<3;i++) os << v.qv[i] << " ";
|
|
|
251 |
os << "~ " << v.qw << " ";
|
|
|
252 |
os << "]";
|
|
|
253 |
|
|
|
254 |
return os;
|
|
|
255 |
}
|
|
|
256 |
}
|
|
|
257 |
|
|
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
|
274 |
#endif // __CGLA_ARITHQUAT_H__
|