Subversion Repositories gelsvn

Rev

Rev 306 | Rev 382 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
303 bj 1
#ifndef __CGLA_ARITHQUAT_H__
2
#define __CGLA_ARITHQUAT_H__
3
 
4
#include "CGLA.h"
323 bj 5
#include "ArithSqMatFloat.h"
303 bj 6
#include <cmath>
7
 
8
namespace CGLA {
9
 
10
  /** \brief A T based Quaterinion class. 
11
 
12
	Quaternions are algebraic entities useful for rotation. */
13
 
14
	template<class T, class V, class Q>
15
  class ArithQuat
16
  {
17
  public:
18
 
19
    /// Vector part of quaternion
20
    V qv;
21
 
22
    /// Scalar part of quaternion
23
    T qw;
24
 
25
    /// Construct undefined quaternion
26
#ifndef NDEBUG
27
    ArithQuat() : qw(CGLA_INIT_VALUE) {}
28
#else
29
    ArithQuat() {}
30
#endif
31
 
32
    /// Construct quaternion from vector and scalar
33
    ArithQuat(const V& imaginary, T real = 1.0f) : qv(imaginary) , qw(real) {}
34
 
35
    /// Construct quaternion from four scalars
36
    ArithQuat(T x, T y, T z, T _qw) : qv(x,y,z), qw(_qw) {}
37
 
38
 
39
    /// Assign values to a quaternion
40
    void set(const V& imaginary, T real=1.0f)
41
    {
42
      qv = imaginary;
43
      qw = real;
44
    }
45
 
46
    void set(T x, T y, T z, T _qw) 
47
    {
48
      qv.set(x,y,z);
49
      qw = _qw;
50
    }
51
 
52
    /*void set(const Vec4f& v)
53
    {
54
      qv.set(v[0], v[1], v[2]);
55
      qw = v[3];		  
56
    }*/
57
 
58
    /// Get values from a quaternion
59
    void get(T& x, T& y, T& z, T& _qw) const
60
    {
61
      x  = qv[0];
62
      y  = qv[1];
63
      z  = qv[2];
64
      _qw = qw;
65
    }
66
 
67
    /// Get imaginary part of a quaternion
68
    V get_imaginary_part() const { return qv; }
69
 
70
    /// Get real part of a quaternion
71
    T get_real_part() const { return qw; }
72
 
73
 
74
 
75
    /// Obtain angle of rotation and axis
76
    void get_rot(T& angle, V& v)
77
    {
78
      angle = 2*std::acos(qw);
79
 
80
      if(angle < TINY) 
81
				v = V(static_cast<T>(1.0), static_cast<T>(0.0), static_cast<T>(0.0));
82
      else 
83
				v = qv*(static_cast<T>(1.0)/std::sin(angle));
84
 
85
      if(angle > M_PI)
86
				v = -v;
87
 
88
      v.normalize();      
89
    }
90
 
91
    /// Construct a Quaternion from an angle and axis of rotation.
92
    void make_rot(T angle, const V& v)
93
    {
94
      angle /= static_cast<T>(2.0);
95
      qv = CGLA::normalize(v)*std::sin(angle);
96
      qw = std::cos(angle);
97
    }
98
 
99
    /** Construct a Quaternion rotating from the direction given
100
	by the first argument to the direction given by the second.*/
101
    void make_rot(const V& s,const V& t)
102
    {
103
      T tmp = std::sqrt(2*(1 + dot(s, t)));
104
      qv = cross(s, t)*(1.0/tmp);
105
      qw = tmp/2.0;    
106
    }
107
 
323 bj 108
	/// Construct a Quaternion from a rotation matrix.
109
    template <class VT, class MT, unsigned int ROWS>
110
    void make_rot(ArithSqMatFloat<VT,MT,ROWS>& m)
111
    {
112
      assert(ROWS==3 || ROWS==4);
113
      T trace = m[0][0] + m[1][1] + m[2][2]  + static_cast<T>(1.0);
114
 
115
      //If the trace of the matrix is greater than zero, then
116
      //perform an "instant" calculation.
117
      if ( trace > TINY ) 
118
      {
119
        T S = sqrt(trace) * static_cast<T>(2.0);
120
        qv = V(m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1] );
121
        qv /= S;
122
        qw = static_cast<T>(0.25) * S;
123
      }
124
      else
125
      {
126
        //If the trace of the matrix is equal to zero (or negative...) then identify
127
        //which major diagonal element has the greatest value.
128
        //Depending on this, calculate the following:
129
 
130
        if ( m[0][0] > m[1][1] && m[0][0] > m[2][2] )  {	// Column 0: 
131
          T S  = sqrt( static_cast<T>(1.0) + m[0][0] - m[1][1] - m[2][2] ) * static_cast<T>(2.0);
132
          qv[0] = 0.25f * S;
133
          qv[1] = (m[1][0] + m[0][1] ) / S;
134
          qv[2] = (m[0][2] + m[2][0] ) / S;
135
          qw = (m[2][1] - m[1][3] ) / S;
136
        } else if ( m[1][1] > m[2][2] ) {			// Column 1: 
137
          T S  = sqrt( 1.0 + m[1][1] - m[0][0] - m[2][2] ) * 2.0;
138
          qv[0] = (m[1][0] + m[0][1] ) / S;
139
          qv[1] = 0.25 * S;
140
          qv[2] = (m[2][1] + m[1][2] ) / S;
141
          qw = (m[0][2] - m[2][0] ) / S;
142
        } else {						// Column 2:
143
          T S  = sqrt( 1.0 + m[2][2] - m[0][0] - m[1][1] ) * 2.0;
144
          qv[0] = (m[0][2] + m[2][0] ) / S;
145
          qv[1] = (m[2][1] + m[1][2] ) / S;
146
          qv[2] = 0.25 * S;
147
          qw = (m[1][0] - m[0][1] ) / S;
148
        }
149
      }
150
      //The quaternion is then defined as:
151
      //  Q = | X Y Z W |
152
    }
153
 
303 bj 154
    //----------------------------------------------------------------------
155
    // Binary operators
156
    //----------------------------------------------------------------------
157
 
158
    bool operator==(const ArithQuat<T,V,Q>& q) const
159
    {
160
      return qw == q.qw && qv == q.qv;
161
    }
162
 
163
    bool operator!=(const ArithQuat<T,V,Q>& q) const
164
    {
165
      return qw != q.qw || qv != q.qv;
166
    }
167
 
168
    /// Multiply two quaternions. (Combine their rotation)
169
    Q operator*(const ArithQuat<T,V,Q>& q) const
170
    {
171
      return Q(cross(qv, q.qv) + qv*q.qw + q.qv*qw, 
172
		         qw*q.qw - dot(qv, q.qv));      
173
    }
174
 
175
    /// Multiply scalar onto quaternion.
176
    Q operator*(T scalar) const
177
    {
178
      return Q(qv*scalar, qw*scalar);
179
    }
180
 
181
    /// Add two quaternions.
182
    Q operator+(const ArithQuat<T,V,Q>& q) const
183
    {
184
      return Q(qv + q.qv, qw + q.qw);
185
    }
186
 
187
    //----------------------------------------------------------------------
188
    // Unary operators
189
    //----------------------------------------------------------------------
190
 
191
    /// Compute the additive inverse of the quaternion
192
    Q operator-() const { return Q(-qv, -qw); }
193
 
194
    /// Compute norm of quaternion
195
    T norm() const { return dot(qv, qv) + qw*qw; }
196
 
197
    /// Return conjugate quaternion
198
    Q conjugate() const { return Q(-qv, qw); }
199
 
200
    /// Compute the multiplicative inverse of the quaternion
201
    Q inverse() const { return Q(conjugate()*(1/norm())); }
202
 
203
    /// Normalize quaternion.
204
    Q normalize() { return Q((*this)*(1/norm())); }
205
 
206
    //----------------------------------------------------------------------
207
    // Application
208
    //----------------------------------------------------------------------
209
 
210
    /// Rotate vector according to quaternion
211
    V apply(const V& vec) const 
212
    {
213
      return ((*this)*Q(vec)*inverse()).qv;
214
    }
215
 
216
    /// Rotate vector according to unit quaternion
217
    V apply_unit(const V& vec) const
218
    {
306 jrf 219
	  assert(abs(norm() - 1.0) < SMALL);
303 bj 220
      return ((*this)*Q(vec)*conjugate()).qv;
221
    }
222
  };
223
 
224
  template<class T, class V, class Q>
225
  inline Q operator*(T scalar, const ArithQuat<T,V,Q>& q)
226
  {
227
    return q*scalar;
228
  }
229
 
230
  /** Perform linear interpolation of two quaternions. 
231
      The last argument is the parameter used to interpolate
232
      between the two first. SLERP - invented by Shoemake -
233
      is a good way to interpolate because the interpolation
234
      is performed on the unit sphere. 	
235
  */
236
	template<class T, class V, class Q>
237
  inline Q slerp(const ArithQuat<T,V,Q>& q0, const ArithQuat<T,V,Q>& q1, T t)
238
  {
239
    T angle = std::acos(q0.qv[0]*q1.qv[0] + q0.qv[1]*q1.qv[1] 
240
			    + q0.qv[2]*q1.qv[2] + q0.qw*q1.qw);
241
    return (q0*std::sin((1 - t)*angle) + q1*std::sin(t*angle))*(1/std::sin(angle));
242
  }
243
 
244
  /// Print quaternion to stream.
245
  template<class T, class V, class Q>
246
  inline std::ostream& operator<<(std::ostream&os, const ArithQuat<T,V,Q>& v)
247
  {
248
    os << "[ ";
249
    for(unsigned int i=0;i<3;i++) os << v.qv[i] << " ";
250
    os << "~ " << v.qw << " ";
251
    os << "]";
252
 
253
    return os;
254
  }
255
}
256
 
257
 
258
 
259
 
260
 
261
 
262
 
263
 
264
 
265
 
266
 
267
 
268
 
269
 
270
 
271
 
272
 
273
#endif // __CGLA_ARITHQUAT_H__