Rev 50 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#ifndef __CGLA_MAT4X4D_H__
#define __CGLA_MAT4X4D_H__
#include "ExceptionStandard.h"
#include "CGLA.h"
#include "Vec3d.h"
#include "Vec3Hf.h"
#include "Vec4d.h"
#include "ArithSqMat4x4Float.h"
namespace CGLA {
/** \brief 4x4 double matrix.
This class is useful for transformations such as perspective projections
or translation where 3x3 matrices do not suffice. */
class Mat4x4d: public ArithSqMat4x4Float<Vec4d, Mat4x4d>
{
public:
/// Construct a Mat4x4d from four Vec4d vectors
Mat4x4d(Vec4d _a, Vec4d _b, Vec4d _c, Vec4d _d):
ArithSqMat4x4Float<Vec4d, Mat4x4d> (_a,_b,_c,_d) {}
/// Construct the nan matrix
Mat4x4d() {}
/// Construct a matrix with identical elements.
explicit Mat4x4d(double a): ArithSqMat4x4Float<Vec4d, Mat4x4d> (a) {}
};
/// Create a rotation _matrix. Rotates about one of the major axes.
Mat4x4d rotation_Mat4x4d(CGLA::Axis axis, float angle);
/// Create a translation matrix
Mat4x4d translation_Mat4x4d(const Vec3d&);
/// Create a scaling matrix.
Mat4x4d scaling_Mat4x4d(const Vec3d&);
/// Create an identity matrix.
inline Mat4x4d identity_Mat4x4d()
{
return Mat4x4d(Vec4d(1,0,0,0),
Vec4d(0,1,0,0),
Vec4d(0,0,1,0),
Vec4d(0,0,0,1));
}
/** Compute inverse assuming that the upper-left 3x3 sub-matrix is
orthonormal (which is the case if the transformation is only
a concatenation of rotations and translations).
*/
inline Mat4x4d invert_ortho(const Mat4x4d& m)
{
Vec3d rx(m[0][0], m[1][0], m[2][0]);
Vec3d ry(m[0][1], m[1][1], m[2][1]);
Vec3d rz(m[0][2], m[1][2], m[2][2]);
Vec3d t(m[0][3], m[1][3], m[2][3]);
return Mat4x4d(Vec4d(rx, -dot(t, rx)),
Vec4d(ry, -dot(t, ry)),
Vec4d(rz, -dot(t, rz)),
Vec4d(0.0, 0.0, 0.0, 1.0));
}
}
#endif