Subversion Repositories gelsvn

Rev

Rev 51 | Rev 306 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 51 Rev 89
1
#ifndef __CGLA_QUATD_H__
1
#ifndef __CGLA_QUATD_H__
2
#define __CGLA_QUATD_H__
2
#define __CGLA_QUATD_H__
3
 
3
 
4
#include "Vec3d.h"
4
#include "Vec3d.h"
5
#include "Vec4d.h"
5
#include "Vec4d.h"
6
#include "Mat3x3d.h"
6
#include "Mat3x3d.h"
7
#include "Mat4x4d.h"
7
#include "Mat4x4d.h"
8
#include <cmath>
8
#include <cmath>
9
 
9
 
10
namespace CGLA {
10
namespace CGLA {
11
 
11
 
12
  /** A Quaterinion class. Quaternions are algebraic entities 
12
  /** \brief A double precision Quaterinion class. 
-
 
13
			
13
      useful for rotation. */
14
	Quaternions are algebraic entities  useful for rotation. */
14
 
15
 
15
  class Quatd
16
  class Quatd
16
  {
17
  {
17
  public:
18
  public:
18
 
19
 
19
    /// Vector part of quaternion
20
    /// Vector part of quaternion
20
    Vec3d qv;
21
    Vec3d qv;
21
 
22
 
22
    /// Scalar part of quaternion
23
    /// Scalar part of quaternion
23
    double qw;
24
    double qw;
24
 
25
 
25
    /// Construct undefined quaternion
26
    /// Construct undefined quaternion
26
#ifndef NDEBUG
27
#ifndef NDEBUG
27
    Quatd() : qw(CGLA_INIT_VALUE) {}
28
    Quatd() : qw(CGLA_INIT_VALUE) {}
28
#else
29
#else
29
    Quatd() {}
30
    Quatd() {}
30
#endif
31
#endif
31
 
32
 
32
    /// Construct quaternion from vector and scalar
33
    /// Construct quaternion from vector and scalar
33
    Quatd(const Vec3d& imaginary, double real = 1.0f) : qv(imaginary) , qw(real) {}
34
    Quatd(const Vec3d& imaginary, double real = 1.0f) : qv(imaginary) , qw(real) {}
34
 
35
 
35
    /// Construct quaternion from four scalars
36
    /// Construct quaternion from four scalars
36
    Quatd(double x, double y, double z, double _qw) : qv(x,y,z), qw(_qw) {}
37
    Quatd(double x, double y, double z, double _qw) : qv(x,y,z), qw(_qw) {}
37
 
38
 
38
    /// Construct quaternion from a 4D vector
39
    /// Construct quaternion from a 4D vector
39
    explicit Quatd(const Vec4d& v) : qv(v[0], v[1], v[2]), qw(v[3]) {}
40
    explicit Quatd(const Vec4d& v) : qv(v[0], v[1], v[2]), qw(v[3]) {}
40
 
41
 
41
    /// Assign values to a quaternion
42
    /// Assign values to a quaternion
42
    void set(const Vec3d& imaginary, double real=1.0f)
43
    void set(const Vec3d& imaginary, double real=1.0f)
43
    {
44
    {
44
      qv = imaginary;
45
      qv = imaginary;
45
      qw = real;
46
      qw = real;
46
    }
47
    }
47
 
48
 
48
    void set(double x, double y, double z, double _qw) 
49
    void set(double x, double y, double z, double _qw) 
49
    {
50
    {
50
      qv.set(x,y,z);
51
      qv.set(x,y,z);
51
      qw = _qw;
52
      qw = _qw;
52
    }
53
    }
53
 
54
 
54
    void set(const Vec4f& v)
55
    void set(const Vec4f& v)
55
    {
56
    {
56
      qv.set(v[0], v[1], v[2]);
57
      qv.set(v[0], v[1], v[2]);
57
      qw = v[3];		  
58
      qw = v[3];		  
58
    }
59
    }
59
 
60
 
60
    /// Get values from a quaternion
61
    /// Get values from a quaternion
61
    void get(double& x, double& y, double& z, double& _qw) const
62
    void get(double& x, double& y, double& z, double& _qw) const
62
    {
63
    {
63
      x  = qv[0];
64
      x  = qv[0];
64
      y  = qv[1];
65
      y  = qv[1];
65
      z  = qv[2];
66
      z  = qv[2];
66
      _qw = qw;
67
      _qw = qw;
67
    }
68
    }
68
 
69
 
69
    /// Get imaginary part of a quaternion
70
    /// Get imaginary part of a quaternion
70
    Vec3d get_imaginary_part() const { return qv; }
71
    Vec3d get_imaginary_part() const { return qv; }
71
 
72
 
72
    /// Get real part of a quaternion
73
    /// Get real part of a quaternion
73
    double get_real_part() const { return qw; }
74
    double get_real_part() const { return qw; }
74
 
75
 
75
    /// Get a 3x3 rotation matrix from a quaternion
76
    /// Get a 3x3 rotation matrix from a quaternion
76
    Mat3x3d get_mat3x3d() const
77
    Mat3x3d get_mat3x3d() const
77
    {
78
    {
78
      double s = 2/norm();
79
      double s = 2/norm();
79
      // note that the all q_*q_ are used twice (optimize)
80
      // note that the all q_*q_ are used twice (optimize)
80
      return Mat3x3d(Vec3d(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
81
      return Mat3x3d(Vec3d(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
81
			         s*(qv[0]*qv[1] - qw*qv[2]),
82
			         s*(qv[0]*qv[1] - qw*qv[2]),
82
			         s*(qv[0]*qv[2] + qw*qv[1])),
83
			         s*(qv[0]*qv[2] + qw*qv[1])),
83
		     Vec3d(      s*(qv[0]*qv[1] + qw*qv[2]),
84
		     Vec3d(      s*(qv[0]*qv[1] + qw*qv[2]),
84
			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
85
			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
85
			         s*(qv[1]*qv[2] - qw*qv[0])),
86
			         s*(qv[1]*qv[2] - qw*qv[0])),
86
		     Vec3d(      s*(qv[0]*qv[2] - qw*qv[1]),
87
		     Vec3d(      s*(qv[0]*qv[2] - qw*qv[1]),
87
			         s*(qv[1]*qv[2] + qw*qv[0]),
88
			         s*(qv[1]*qv[2] + qw*qv[0]),
88
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1])));      
89
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1])));      
89
    }
90
    }
90
 
91
 
91
    /// Get a 4x4 rotation matrix from a quaternion
92
    /// Get a 4x4 rotation matrix from a quaternion
92
    Mat4x4d get_mat4x4d() const
93
    Mat4x4d get_mat4x4d() const
93
    {
94
    {
94
      double s = 2/norm();
95
      double s = 2/norm();
95
      // note that the all q_*q_ are used twice (optimize?)
96
      // note that the all q_*q_ are used twice (optimize?)
96
      return Mat4x4d(Vec4d(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
97
      return Mat4x4d(Vec4d(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
97
			         s*(qv[0]*qv[1] - qw*qv[2]),
98
			         s*(qv[0]*qv[1] - qw*qv[2]),
98
			         s*(qv[0]*qv[2] + qw*qv[1]),
99
			         s*(qv[0]*qv[2] + qw*qv[1]),
99
			   0.0),
100
			   0.0),
100
		     Vec4d(      s*(qv[0]*qv[1] + qw*qv[2]),
101
		     Vec4d(      s*(qv[0]*qv[1] + qw*qv[2]),
101
			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
102
			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
102
			         s*(qv[1]*qv[2] - qw*qv[0]),
103
			         s*(qv[1]*qv[2] - qw*qv[0]),
103
			   0.0),
104
			   0.0),
104
		     Vec4d(      s*(qv[0]*qv[2] - qw*qv[1]),
105
		     Vec4d(      s*(qv[0]*qv[2] - qw*qv[1]),
105
			         s*(qv[1]*qv[2] + qw*qv[0]),
106
			         s*(qv[1]*qv[2] + qw*qv[0]),
106
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1]),
107
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1]),
107
			   0.0),
108
			   0.0),
108
		     Vec4d(0.0, 0.0, 0.0, 1.0));
109
		     Vec4d(0.0, 0.0, 0.0, 1.0));
109
    }
110
    }
110
 
111
 
111
    /// Obtain angle of rotation and axis
112
    /// Obtain angle of rotation and axis
112
    void get_rot(double& angle, Vec3d& v)
113
    void get_rot(double& angle, Vec3d& v)
113
    {
114
    {
114
      angle = 2*std::acos(qw);
115
      angle = 2*std::acos(qw);
115
 
116
 
116
      if(angle < TINY) 
117
      if(angle < TINY) 
117
	v = Vec3d(1.0, 0.0, 0.0);
118
	v = Vec3d(1.0, 0.0, 0.0);
118
      else 
119
      else 
119
	v = qv*(1/std::sin(angle));
120
	v = qv*(1/std::sin(angle));
120
 
121
 
121
      if(angle > M_PI)
122
      if(angle > M_PI)
122
	v = -v;
123
	v = -v;
123
 
124
 
124
      v.normalize();
125
      v.normalize();
125
    }
126
    }
126
 
127
 
127
    /// Construct a Quaternion from an angle and axis of rotation.
128
    /// Construct a Quaternion from an angle and axis of rotation.
128
    void make_rot(double angle, const Vec3d& v)
129
    void make_rot(double angle, const Vec3d& v)
129
    {
130
    {
130
      angle /= 2.0;
131
      angle /= 2.0;
131
      qv = CGLA::normalize(v)*std::sin(angle);
132
      qv = CGLA::normalize(v)*std::sin(angle);
132
      qw = std::cos(angle);
133
      qw = std::cos(angle);
133
    }
134
    }
134
 
135
 
135
    /** Construct a Quaternion rotating from the direction given
136
    /** Construct a Quaternion rotating from the direction given
136
	by the first argument to the direction given by the second.*/
137
	by the first argument to the direction given by the second.*/
137
    void make_rot(const Vec3d& s,const Vec3d& t)
138
    void make_rot(const Vec3d& s,const Vec3d& t)
138
    {
139
    {
139
      double tmp = std::sqrt(2*(1 + dot(s, t)));
140
      double tmp = std::sqrt(2*(1 + dot(s, t)));
140
      qv = cross(s, t)*(1.0/tmp);
141
      qv = cross(s, t)*(1.0/tmp);
141
      qw = tmp/2.0;    
142
      qw = tmp/2.0;    
142
    }
143
    }
143
 
144
 
144
    //----------------------------------------------------------------------
145
    //----------------------------------------------------------------------
145
    // Binary operators
146
    // Binary operators
146
    //----------------------------------------------------------------------
147
    //----------------------------------------------------------------------
147
    
148
    
148
    bool operator==(const Quatd& q) const
149
    bool operator==(const Quatd& q) const
149
    {
150
    {
150
      return qw == q.qw && qv == q.qv;
151
      return qw == q.qw && qv == q.qv;
151
    }
152
    }
152
 
153
 
153
    bool operator!=(const Quatd& q) const
154
    bool operator!=(const Quatd& q) const
154
    {
155
    {
155
      return qw != q.qw || qv != q.qv;
156
      return qw != q.qw || qv != q.qv;
156
    }
157
    }
157
 
158
 
158
    /// Multiply two quaternions. (Combine their rotation)
159
    /// Multiply two quaternions. (Combine their rotation)
159
    Quatd operator*(const Quatd& q) const
160
    Quatd operator*(const Quatd& q) const
160
    {
161
    {
161
      return Quatd(cross(qv, q.qv) + qv*q.qw + q.qv*qw, 
162
      return Quatd(cross(qv, q.qv) + qv*q.qw + q.qv*qw, 
162
		         qw*q.qw - dot(qv, q.qv));      
163
		         qw*q.qw - dot(qv, q.qv));      
163
    }
164
    }
164
 
165
 
165
    /// Multiply scalar onto quaternion.
166
    /// Multiply scalar onto quaternion.
166
    Quatd operator*(double scalar) const
167
    Quatd operator*(double scalar) const
167
    {
168
    {
168
      return Quatd(qv*scalar, qw*scalar);
169
      return Quatd(qv*scalar, qw*scalar);
169
    }
170
    }
170
 
171
 
171
    /// Add two quaternions.
172
    /// Add two quaternions.
172
    Quatd operator+(const Quatd& q) const
173
    Quatd operator+(const Quatd& q) const
173
    {
174
    {
174
      return Quatd(qv + q.qv, qw + q.qw);
175
      return Quatd(qv + q.qv, qw + q.qw);
175
    }
176
    }
176
 
177
 
177
    //----------------------------------------------------------------------
178
    //----------------------------------------------------------------------
178
    // Unary operators
179
    // Unary operators
179
    //----------------------------------------------------------------------
180
    //----------------------------------------------------------------------
180
 
181
 
181
    /// Compute the additive inverse of the quaternion
182
    /// Compute the additive inverse of the quaternion
182
    Quatd operator-() const { return Quatd(-qv, -qw); }
183
    Quatd operator-() const { return Quatd(-qv, -qw); }
183
 
184
 
184
    /// Compute norm of quaternion
185
    /// Compute norm of quaternion
185
    double norm() const { return dot(qv, qv) + qw*qw; }
186
    double norm() const { return dot(qv, qv) + qw*qw; }
186
 
187
 
187
    /// Return conjugate quaternion
188
    /// Return conjugate quaternion
188
    Quatd conjugate() const { return Quatd(-qv, qw); }
189
    Quatd conjugate() const { return Quatd(-qv, qw); }
189
 
190
 
190
    /// Compute the multiplicative inverse of the quaternion
191
    /// Compute the multiplicative inverse of the quaternion
191
    Quatd inverse() const { return Quatd(conjugate()*(1/norm())); }
192
    Quatd inverse() const { return Quatd(conjugate()*(1/norm())); }
192
    
193
    
193
    /// Normalize quaternion.
194
    /// Normalize quaternion.
194
    Quatd normalize() { return Quatd((*this)*(1/norm())); }
195
    Quatd normalize() { return Quatd((*this)*(1/norm())); }
195
 
196
 
196
    //----------------------------------------------------------------------
197
    //----------------------------------------------------------------------
197
    // Application
198
    // Application
198
    //----------------------------------------------------------------------
199
    //----------------------------------------------------------------------
199
 
200
 
200
    /// Rotate vector according to quaternion
201
    /// Rotate vector according to quaternion
201
    Vec3d apply(const Vec3d& vec) const 
202
    Vec3d apply(const Vec3d& vec) const 
202
    {
203
    {
203
      return ((*this)*Quatd(vec)*inverse()).qv;
204
      return ((*this)*Quatd(vec)*inverse()).qv;
204
    }
205
    }
205
 
206
 
206
    /// Rotate vector according to unit quaternion
207
    /// Rotate vector according to unit quaternion
207
    Vec3d apply_unit(const Vec3d& vec) const
208
    Vec3d apply_unit(const Vec3d& vec) const
208
    {
209
    {
209
      return ((*this)*Quatd(vec)*conjugate()).qv;
210
      return ((*this)*Quatd(vec)*conjugate()).qv;
210
    }
211
    }
211
  };
212
  };
212
 
213
 
213
  inline Quatd operator*(double scalar, const Quatd& q)
214
  inline Quatd operator*(double scalar, const Quatd& q)
214
  {
215
  {
215
    return q*scalar;
216
    return q*scalar;
216
  }
217
  }
217
 
218
 
218
  /** Perform linear interpolation of two quaternions. 
219
  /** Perform linear interpolation of two quaternions. 
219
      The last argument is the parameter used to interpolate
220
      The last argument is the parameter used to interpolate
220
      between the two first. SLERP - invented by Shoemake -
221
      between the two first. SLERP - invented by Shoemake -
221
      is a good way to interpolate because the interpolation
222
      is a good way to interpolate because the interpolation
222
      is performed on the unit sphere. 	
223
      is performed on the unit sphere. 	
223
  */
224
  */
224
  inline Quatd slerp(Quatd q0, Quatd q1, double t)
225
  inline Quatd slerp(Quatd q0, Quatd q1, double t)
225
  {
226
  {
226
    double angle = std::acos(q0.qv[0]*q1.qv[0] + q0.qv[1]*q1.qv[1] 
227
    double angle = std::acos(q0.qv[0]*q1.qv[0] + q0.qv[1]*q1.qv[1] 
227
			     + q0.qv[2]*q1.qv[2] + q0.qw*q1.qw);
228
			     + q0.qv[2]*q1.qv[2] + q0.qw*q1.qw);
228
    return (q0*std::sin((1 - t)*angle) + q1*std::sin(t*angle))*(1/std::sin(angle));
229
    return (q0*std::sin((1 - t)*angle) + q1*std::sin(t*angle))*(1/std::sin(angle));
229
  }
230
  }
230
 
231
 
231
  /// Create an identity quaternion
232
  /// Create an identity quaternion
232
  inline Quatd identity_Quatd()
233
  inline Quatd identity_Quatd()
233
  {
234
  {
234
    return Quatd(Vec3d(0.0));
235
    return Quatd(Vec3d(0.0));
235
  }
236
  }
236
 
237
 
237
  /// Print quaternion to stream.
238
  /// Print quaternion to stream.
238
  inline std::ostream& operator<<(std::ostream&os, const Quatd v)
239
  inline std::ostream& operator<<(std::ostream&os, const Quatd v)
239
  {
240
  {
240
    os << "[ ";
241
    os << "[ ";
241
    for(unsigned int i=0;i<3;i++) os << v.qv[i] << " ";
242
    for(unsigned int i=0;i<3;i++) os << v.qv[i] << " ";
242
    os << "~ " << v.qw << " ";
243
    os << "~ " << v.qw << " ";
243
    os << "]";
244
    os << "]";
244
 
245
 
245
    return os;
246
    return os;
246
  }
247
  }
247
}
248
}
248
#endif
249
#endif
249
 
250