Subversion Repositories gelsvn

Rev

Rev 48 | Rev 89 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
48 jrf 1
#ifndef __CGLA_QUATF_H__
2
#define __CGLA_QUATF_H__
3
 
4
#include "Vec3f.h"
5
#include "Vec4f.h"
6
#include "Mat3x3f.h"
7
#include "Mat4x4f.h"
49 jrf 8
#include <cmath>
48 jrf 9
 
10
namespace CGLA {
11
 
12
  /** A Quaterinion class. Quaternions are algebraic entities 
13
      useful for rotation. */
14
 
15
  class Quatf
16
  {
17
  public:
18
 
19
    /// Vector part of quaternion
20
    Vec3f qv;
21
 
22
    /// Scalar part of quaternion
23
    float qw;
24
 
25
    /// Construct undefined quaternion
26
#ifndef NDEBUG
27
    Quatf() : qw(CGLA_INIT_VALUE) {}
28
#else
29
    Quatf() {}
30
#endif
31
 
32
    /// Construct quaternion from vector and scalar
33
    Quatf(const Vec3f& imaginary, float real = 1.0f) : qv(imaginary) , qw(real) {}
34
 
35
    /// Construct quaternion from four scalars
36
    Quatf(float x, float y, float z, float _qw) : qv(x,y,z), qw(_qw) {}
37
 
38
    /// Construct quaternion from a 4D vector
39
    explicit Quatf(const Vec4f& v) : qv(v[0], v[1], v[2]), qw(v[3]) {}
40
 
41
    /// Assign values to a quaternion
42
    void set(const Vec3f& imaginary, float real=1.0f)
43
    {
44
      qv = imaginary;
45
      qw = real;
46
    }
47
 
48
    void set(float x, float y, float z, float _qw) 
49
    {
50
      qv.set(x,y,z);
51
      qw = _qw;
52
    }
53
 
54
    void set(const Vec4f& v)
55
    {
56
      qv.set(v[0], v[1], v[2]);
57
      qw = v[3];		  
58
    }
59
 
60
    /// Get values from a quaternion
61
    void get(float& x, float& y, float& z, float& _qw) const
62
    {
63
      x  = qv[0];
64
      y  = qv[1];
65
      z  = qv[2];
66
      _qw = qw;
67
    }
68
 
69
    /// Get imaginary part of a quaternion
70
    Vec3f get_imaginary_part() const { return qv; }
71
 
72
    /// Get real part of a quaternion
73
    float get_real_part() const { return qw; }
74
 
75
    /// Get a 3x3 rotation matrix from a quaternion
49 jrf 76
    Mat3x3f get_mat3x3f() const
77
    {
78
      float s = 2/norm();
79
      // note that the all q_*q_ are used twice (optimize)
80
      return Mat3x3f(Vec3f(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
81
			         s*(qv[0]*qv[1] - qw*qv[2]),
82
			         s*(qv[0]*qv[2] + qw*qv[1])),
83
		     Vec3f(      s*(qv[0]*qv[1] + qw*qv[2]),
84
  			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
85
			         s*(qv[1]*qv[2] - qw*qv[0])),
86
		     Vec3f(      s*(qv[0]*qv[2] - qw*qv[1]),
87
			         s*(qv[1]*qv[2] + qw*qv[0]),
88
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1])));
89
    }
48 jrf 90
 
91
    /// Get a 4x4 rotation matrix from a quaternion
49 jrf 92
    Mat4x4f get_mat4x4f() const
93
    {
94
      float s = 2/norm();
95
      // note that the all q_*q_ are used twice (optimize?)
96
      return Mat4x4f(Vec4f(1.0 - s*(qv[1]*qv[1] + qv[2]*qv[2]),
97
			         s*(qv[0]*qv[1] - qw*qv[2]),
98
			         s*(qv[0]*qv[2] + qw*qv[1]),
99
		           0.0),
100
		     Vec4f(      s*(qv[0]*qv[1] + qw*qv[2]),
101
			   1.0 - s*(qv[0]*qv[0] + qv[2]*qv[2]),
102
			         s*(qv[1]*qv[2] - qw*qv[0]),
103
			   0.0),
104
		     Vec4f(      s*(qv[0]*qv[2] - qw*qv[1]),
105
			         s*(qv[1]*qv[2] + qw*qv[0]),
106
			   1.0 - s*(qv[0]*qv[0] + qv[1]*qv[1]),
107
			   0.0),
108
		     Vec4f(0.0, 0.0, 0.0, 1.0));
109
    }
48 jrf 110
 
111
    /// Obtain angle of rotation and axis
49 jrf 112
    void get_rot(float& angle, Vec3f& v)
113
    {
114
      angle = 2*std::acos(qw);
48 jrf 115
 
49 jrf 116
      if(angle < TINY) 
117
	v = Vec3f(1.0, 0.0, 0.0);
118
      else 
119
	v = qv*(1/std::sin(angle));
120
 
121
      if(angle > M_PI)
122
	v = -v;
123
 
124
      v.normalize();      
125
    }
126
 
48 jrf 127
    /// Construct a Quaternion from an angle and axis of rotation.
49 jrf 128
    void make_rot(float angle, const Vec3f& v)
129
    {
130
      angle /= 2.0;
131
      qv = CGLA::normalize(v)*std::sin(angle);
132
      qw = std::cos(angle);
133
    }
48 jrf 134
 
135
    /** Construct a Quaternion rotating from the direction given
136
	by the first argument to the direction given by the second.*/
49 jrf 137
    void make_rot(const Vec3f& s,const Vec3f& t)
138
    {
139
      float tmp = std::sqrt(2*(1 + dot(s, t)));
140
      qv = cross(s, t)*(1.0/tmp);
141
      qw = tmp/2.0;    
142
    }
48 jrf 143
 
144
    //----------------------------------------------------------------------
145
    // Binary operators
146
    //----------------------------------------------------------------------
147
 
148
    bool operator==(const Quatf& q) const
149
    {
150
      return qw == q.qw && qv == q.qv;
151
    }
152
 
153
    bool operator!=(const Quatf& q) const
154
    {
155
      return qw != q.qw || qv != q.qv;
156
    }
157
 
158
    /// Multiply two quaternions. (Combine their rotation)
159
    Quatf operator*(const Quatf& q) const
160
    {
161
      return Quatf(cross(qv, q.qv) + qv*q.qw + q.qv*qw, 
162
		         qw*q.qw - dot(qv, q.qv));      
163
    }
164
 
165
    /// Multiply scalar onto quaternion.
166
    Quatf operator*(float scalar) const
167
    {
168
      return Quatf(qv*scalar, qw*scalar);
169
    }
170
 
171
    /// Add two quaternions.
172
    Quatf operator+(const Quatf& q) const
173
    {
174
      return Quatf(qv + q.qv, qw + q.qw);
175
    }
176
 
177
    //----------------------------------------------------------------------
178
    // Unary operators
179
    //----------------------------------------------------------------------
180
 
181
    /// Compute the additive inverse of the quaternion
182
    Quatf operator-() const { return Quatf(-qv, -qw); }
183
 
184
    /// Compute norm of quaternion
185
    float norm() const { return dot(qv, qv) + qw*qw; }
186
 
187
    /// Return conjugate quaternion
188
    Quatf conjugate() const { return Quatf(-qv, qw); }
189
 
190
    /// Compute the multiplicative inverse of the quaternion
191
    Quatf inverse() const { return Quatf(conjugate()*(1/norm())); }
192
 
193
    /// Normalize quaternion.
194
    Quatf normalize() { return Quatf((*this)*(1/norm())); }
195
 
196
    //----------------------------------------------------------------------
197
    // Application
198
    //----------------------------------------------------------------------
199
 
200
    /// Rotate vector according to quaternion
201
    Vec3f apply(const Vec3f& vec) const 
202
    {
203
      return ((*this)*Quatf(vec)*inverse()).qv;
204
    }
205
 
206
    /// Rotate vector according to unit quaternion
207
    Vec3f apply_unit(const Vec3f& vec) const
208
    {
209
      return ((*this)*Quatf(vec)*conjugate()).qv;
210
    }
211
  };
212
 
213
  inline Quatf operator*(float scalar, const Quatf& q)
214
  {
215
    return q*scalar;
216
  }
217
 
218
  /** Perform linear interpolation of two quaternions. 
219
      The last argument is the parameter used to interpolate
220
      between the two first. SLERP - invented by Shoemake -
221
      is a good way to interpolate because the interpolation
222
      is performed on the unit sphere. 	
223
  */
49 jrf 224
  inline Quatf slerp(Quatf q0, Quatf q1, float t)
225
  {
226
    float angle = std::acos(q0.qv[0]*q1.qv[0] + q0.qv[1]*q1.qv[1] 
227
			    + q0.qv[2]*q1.qv[2] + q0.qw*q1.qw);
228
    return (q0*std::sin((1 - t)*angle) + q1*std::sin(t*angle))*(1/std::sin(angle));
229
  }
48 jrf 230
 
231
  /// Create an identity quaternion
232
  inline Quatf identity_Quatf()
233
  {
234
    return Quatf(Vec3f(0.0));
235
  }
236
 
237
  /// Print quaternion to stream.
238
  inline std::ostream& operator<<(std::ostream&os, const Quatf v)
239
  {
240
    os << "[ ";
241
    for(unsigned int i=0;i<3;i++) os << v.qv[i] << " ";
242
    os << "~ " << v.qw << " ";
243
    os << "]";
244
 
245
    return os;
246
  }
247
}
248
#endif