443 |
jab |
1 |
#ifndef __GEOMETRY_GRIDALGORITHM_H
|
|
|
2 |
#define __GEOMETRY_GRIDALGORITHM_H
|
61 |
jab |
3 |
|
|
|
4 |
/*
|
|
|
5 |
Functions:
|
|
|
6 |
|
|
|
7 |
void for_each_voxel(Grid& g, F& f);
|
|
|
8 |
void for_each_voxel(Grid& g, const Vec3i& p0, const Vec3i& p7, F& f);
|
|
|
9 |
void for_each_voxel_ordered(Grid& g, const Vec3i& p0, const Vec3i& p7, F& f);
|
|
|
10 |
void for_each_voxel_ordered(Grid& g, F&);
|
|
|
11 |
void for_each_voxel_const(const Grid& g,
|
|
|
12 |
const Vec3i& p0, const Vec3i& p7, F& f);
|
|
|
13 |
void for_each_voxel_const(const Grid& g, F& f);
|
|
|
14 |
void for_each_voxel_ordered_const(Grid& g,
|
|
|
15 |
const Vec3i& p0, const Vec3i& p7,
|
|
|
16 |
F& f);
|
|
|
17 |
void for_each_voxel_ordered_const(Grid& g, F& f);
|
|
|
18 |
|
|
|
19 |
Purpose:
|
|
|
20 |
----------
|
|
|
21 |
|
|
|
22 |
Visit all voxels (or voxels in a region og interest) in grid. A function
|
|
|
23 |
is invoked on each voxel.
|
|
|
24 |
|
|
|
25 |
The "ordered" functions traverse the grid in a systematic way: A
|
|
|
26 |
slice at a time and for each slice one row at a time. The other
|
|
|
27 |
functions make no guarantees about how the volume (roi) is traversed.
|
|
|
28 |
|
|
|
29 |
Types:
|
|
|
30 |
----------
|
|
|
31 |
|
|
|
32 |
Grid - a grid type, either HGrid<T,CellT> or RGrid<T>
|
|
|
33 |
|
|
|
34 |
F - functor type a funtion or class with the function call operator
|
|
|
35 |
overloaded. The functor should look either like this
|
|
|
36 |
|
|
|
37 |
void fun(const Vec3i&, T& x)
|
|
|
38 |
|
|
|
39 |
or this
|
|
|
40 |
|
|
|
41 |
void fun(const Vec3i&, const T& x)
|
|
|
42 |
|
|
|
43 |
in the case of the const functions.
|
|
|
44 |
|
|
|
45 |
Arguments:
|
|
|
46 |
----------
|
|
|
47 |
|
|
|
48 |
g - The voxel grid, we wish to traverse.
|
|
|
49 |
p0 - (xmin, ymin, zmin) coordinates of the window we wish to
|
|
|
50 |
traverse.
|
|
|
51 |
p7 - (xmax, ymax, zmax) coordinates of the window we wish to
|
|
|
52 |
traverse.
|
|
|
53 |
f - functor.
|
|
|
54 |
|
|
|
55 |
*/
|
|
|
56 |
|
|
|
57 |
#include <iostream>
|
|
|
58 |
#include "RGrid.h"
|
|
|
59 |
#include "HGrid.h"
|
|
|
60 |
|
|
|
61 |
namespace Geometry
|
|
|
62 |
{
|
|
|
63 |
template<class T, class F>
|
|
|
64 |
void _for_each_voxel(T* data,
|
|
|
65 |
int x_dim, int xy_dim,
|
|
|
66 |
const CGLA::Vec3i& p0,
|
|
|
67 |
const CGLA::Vec3i& p7,
|
|
|
68 |
F& functor,
|
|
|
69 |
const CGLA::Vec3i& offset = CGLA::Vec3i(0))
|
|
|
70 |
{
|
|
|
71 |
const int Amin = p0[2]*xy_dim;
|
|
|
72 |
const int Amax = p7[2]*xy_dim;
|
|
|
73 |
int Bmin = Amin +p0[1]*x_dim;
|
|
|
74 |
int Bmax = Amin +p7[1]*x_dim;
|
|
|
75 |
CGLA::Vec3i p0o = p0+offset;
|
|
|
76 |
CGLA::Vec3i p(p0o);
|
|
|
77 |
for(int A=Amin; A<Amax; A+=xy_dim, ++p[2])
|
|
|
78 |
{
|
|
|
79 |
p[1] = p0o[1];
|
|
|
80 |
for(int B = Bmin; B<Bmax; B+=x_dim, ++p[1])
|
|
|
81 |
{
|
|
|
82 |
p[0] = p0o[0];
|
|
|
83 |
int Cmin = B+p0[0];
|
|
|
84 |
int Cmax = B+p7[0];
|
|
|
85 |
for(int C=Cmin; C<Cmax; ++C, ++p[0])
|
|
|
86 |
functor(p, data[C]);
|
|
|
87 |
}
|
|
|
88 |
Bmin += xy_dim;
|
|
|
89 |
Bmax += xy_dim;
|
|
|
90 |
}
|
|
|
91 |
}
|
|
|
92 |
|
|
|
93 |
template<class T, class F>
|
|
|
94 |
void _for_each_voxel(T* data,
|
|
|
95 |
const CGLA::Vec3i& dims,
|
|
|
96 |
F& functor,
|
|
|
97 |
const CGLA::Vec3i& offset = CGLA::Vec3i(0))
|
|
|
98 |
{
|
|
|
99 |
int l=0;
|
|
|
100 |
CGLA::Vec3i p(offset);
|
|
|
101 |
CGLA::Vec3i p7(offset);
|
|
|
102 |
p7 += dims;
|
|
|
103 |
|
|
|
104 |
for(; p[2]<p7[2]; ++p[2])
|
|
|
105 |
for(p[1]=offset[1]; p[1]<p7[1]; ++p[1])
|
|
|
106 |
for(p[0]=offset[0]; p[0]<p7[0]; ++p[0])
|
|
|
107 |
functor(p, data[l++]);
|
|
|
108 |
}
|
|
|
109 |
|
|
|
110 |
|
|
|
111 |
/** Loop over all voxels in a sub-region (slice) of an
|
|
|
112 |
RGrid and invoke a functor on each voxel.
|
|
|
113 |
The grid is the first argument, the slice is
|
|
|
114 |
specified by the two subsequent args, and the functor
|
|
|
115 |
is the last argument. */
|
|
|
116 |
template<class T, class F>
|
|
|
117 |
void for_each_voxel(RGrid<T>& grid,
|
|
|
118 |
const CGLA::Vec3i& p0,
|
|
|
119 |
const CGLA::Vec3i& p7,
|
|
|
120 |
F& functor)
|
|
|
121 |
{
|
|
|
122 |
_for_each_voxel(grid.get(), grid.get_x_dim(), grid.get_xy_dim(),
|
|
|
123 |
CGLA::v_max(p0, CGLA::Vec3i(0)),
|
|
|
124 |
CGLA::v_min(p7, grid.get_dims()),
|
|
|
125 |
functor);
|
|
|
126 |
}
|
|
|
127 |
|
|
|
128 |
/** Loop over all voxels in an entire RGrid.
|
|
|
129 |
Grid is the first argument, and a functor is
|
|
|
130 |
the second. For each voxel, an operation
|
|
|
131 |
specified by the functor is performed. */
|
|
|
132 |
template<class T, class F>
|
|
|
133 |
void for_each_voxel(RGrid<T>& grid, F& functor)
|
|
|
134 |
{
|
|
|
135 |
_for_each_voxel(grid.get(), grid.get_dims(), functor);
|
|
|
136 |
}
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
/** For each voxel (ordered). The idea of ordered traversal is
|
|
|
140 |
that we traverse the volume in a systematic fashion as opposed
|
|
|
141 |
to traversing simply according to the memory layout of the volume
|
|
|
142 |
data structure. This is important e.g. if we want to save the
|
|
|
143 |
volume in raw format.
|
|
|
144 |
For an RGrid, there is no difference though.
|
|
|
145 |
*/
|
|
|
146 |
template<class T, class F>
|
|
|
147 |
void for_each_voxel_ordered(RGrid<T>& grid,
|
|
|
148 |
const CGLA::Vec3i& p0,
|
|
|
149 |
const CGLA::Vec3i& p7,
|
|
|
150 |
F& functor)
|
|
|
151 |
{
|
|
|
152 |
_for_each_voxel(grid.get(), grid.get_x_dim(), grid.get_xy_dim(),
|
|
|
153 |
CGLA::v_max(p0, CGLA::Vec3i(0)),
|
|
|
154 |
CGLA::v_min(p7, grid.get_dims()),
|
|
|
155 |
functor);
|
|
|
156 |
}
|
|
|
157 |
|
|
|
158 |
template<class T, class F>
|
|
|
159 |
void for_each_voxel_ordered(RGrid<T>& grid, F& functor)
|
|
|
160 |
{
|
|
|
161 |
_for_each_voxel(grid.get(), grid.get_dims(), functor);
|
|
|
162 |
}
|
|
|
163 |
|
|
|
164 |
|
|
|
165 |
template<class T, class CellT, class F>
|
|
|
166 |
void for_each_cell(HGrid<T,CellT>& grid,
|
|
|
167 |
const CGLA::Vec3i& p0,
|
|
|
168 |
const CGLA::Vec3i& p7,
|
|
|
169 |
F& functor)
|
|
|
170 |
{
|
|
|
171 |
CGLA::Vec3i p0t = p0/grid.get_bottom_dim();
|
|
|
172 |
CGLA::Vec3i p7t = CGLA::v_min(p7/grid.get_bottom_dim()+
|
|
|
173 |
CGLA::Vec3i(1),
|
|
|
174 |
grid.get_top_dims());
|
|
|
175 |
for(CGLA::Vec3i pt(p0t); pt[2]<p7t[2]; ++pt[2])
|
|
|
176 |
for(pt[1]=p0t[1]; pt[1]<p7t[1]; ++pt[1])
|
|
|
177 |
for(pt[0]=p0t[0]; pt[0]<p7t[0]; ++pt[0])
|
|
|
178 |
functor(pt*CellT::get_dim(), grid.get_cell(pt));
|
|
|
179 |
}
|
|
|
180 |
|
|
|
181 |
template<class T, class CellT, class F>
|
|
|
182 |
void for_each_cell(HGrid<T,CellT>& grid,
|
|
|
183 |
F& functor)
|
|
|
184 |
{
|
|
|
185 |
CGLA::Vec3i p0t;
|
|
|
186 |
CGLA::Vec3i p7t = grid.get_dims();
|
|
|
187 |
const int inc = CellT::get_dim();
|
|
|
188 |
int l=0;
|
|
|
189 |
for(CGLA::Vec3i pt(p0t); pt[2]<p7t[2]; pt[2]+=inc)
|
|
|
190 |
for(pt[1]=p0t[1]; pt[1]<p7t[1]; pt[1]+=inc)
|
|
|
191 |
for(pt[0]=p0t[0]; pt[0]<p7t[0]; pt[0]+=inc)
|
|
|
192 |
functor(pt, grid.get_cell(l++));
|
|
|
193 |
}
|
|
|
194 |
|
|
|
195 |
|
|
|
196 |
template<class CellT, class F>
|
|
|
197 |
class _HGridCellFunctor
|
|
|
198 |
{
|
|
|
199 |
const CGLA::Vec3i p0;
|
|
|
200 |
const CGLA::Vec3i p7;
|
|
|
201 |
F& functor;
|
|
|
202 |
|
|
|
203 |
public:
|
|
|
204 |
_HGridCellFunctor(const CGLA::Vec3i _p0,
|
|
|
205 |
const CGLA::Vec3i _p7,
|
|
|
206 |
F& _functor): p0(_p0), p7(_p7), functor(_functor) {}
|
|
|
207 |
|
|
|
208 |
void operator()(const CGLA::Vec3i& offset,
|
|
|
209 |
CellT& cell)
|
|
|
210 |
{
|
|
|
211 |
CGLA::Vec3i p0c = CGLA::v_max(p0-offset, CGLA::Vec3i(0));
|
|
|
212 |
CGLA::Vec3i p7c = CGLA::v_min(p7-offset, CGLA::Vec3i(CellT::get_dim()));
|
|
|
213 |
|
|
|
214 |
if(cell.is_coalesced())
|
|
|
215 |
cell.split();
|
|
|
216 |
|
|
|
217 |
_for_each_voxel(cell.get(),
|
|
|
218 |
CellT::get_dim(),
|
|
|
219 |
CGLA::sqr(CellT::get_dim()),
|
|
|
220 |
p0c, p7c, functor, offset);
|
|
|
221 |
}
|
|
|
222 |
};
|
|
|
223 |
|
|
|
224 |
|
|
|
225 |
template<class T, class CellT, class F>
|
|
|
226 |
void for_each_voxel(HGrid<T,CellT>& grid,
|
|
|
227 |
const CGLA::Vec3i& _p0,
|
|
|
228 |
const CGLA::Vec3i& _p7,
|
|
|
229 |
F& functor)
|
|
|
230 |
{
|
|
|
231 |
CGLA::Vec3i p0 = CGLA::v_max(_p0, CGLA::Vec3i(0));
|
|
|
232 |
CGLA::Vec3i p7 = CGLA::v_min(_p7, grid.get_dims());
|
|
|
233 |
_HGridCellFunctor<CellT,F> cell_functor(p0, p7, functor);
|
|
|
234 |
for_each_cell(grid, p0, p7, cell_functor);
|
|
|
235 |
}
|
|
|
236 |
|
|
|
237 |
template<class T, class CellT, class F>
|
|
|
238 |
void for_each_voxel(HGrid<T,CellT>& grid, F& functor)
|
|
|
239 |
{
|
|
|
240 |
_HGridCellFunctor<CellT,F> cell_functor(CGLA::Vec3i(0),
|
|
|
241 |
grid.get_dims(), functor);
|
|
|
242 |
for_each_cell(grid, cell_functor);
|
|
|
243 |
}
|
|
|
244 |
|
|
|
245 |
template<class T, class CellT, class F>
|
|
|
246 |
void for_each_voxel_ordered(HGrid<T,CellT>& grid,
|
|
|
247 |
const CGLA::Vec3i& _p0,
|
|
|
248 |
const CGLA::Vec3i& _p7,
|
|
|
249 |
F& functor)
|
|
|
250 |
{
|
|
|
251 |
CGLA::Vec3i p0 = CGLA::v_max(_p0, CGLA::Vec3i(0));
|
|
|
252 |
CGLA::Vec3i p7 = CGLA::v_min(_p7, grid.get_dims());
|
|
|
253 |
for(int k=p0[2];k<p7[2];++k)
|
|
|
254 |
for(int j=p0[1];j<p7[1];++j)
|
|
|
255 |
for(int i=p0[0];i<p7[0];++i)
|
|
|
256 |
{
|
|
|
257 |
CGLA::Vec3i p(i,j,k);
|
|
|
258 |
float val = grid[p];
|
|
|
259 |
float nval = val;
|
|
|
260 |
functor(p, nval);
|
|
|
261 |
if(nval != val)
|
|
|
262 |
grid.store(p, nval);
|
|
|
263 |
}
|
|
|
264 |
}
|
|
|
265 |
|
|
|
266 |
template<class T, class CellT, class F>
|
|
|
267 |
void for_each_voxel_ordered(HGrid<T,CellT>& grid, F& functor)
|
|
|
268 |
{
|
|
|
269 |
for_each_voxel_ordered(grid, CGLA::Vec3i(0), grid.get_dims(), functor);
|
|
|
270 |
}
|
|
|
271 |
|
|
|
272 |
|
|
|
273 |
template<typename T>
|
|
|
274 |
class _AssignFun
|
|
|
275 |
{
|
|
|
276 |
T val;
|
|
|
277 |
public:
|
|
|
278 |
_AssignFun(const T& _val): val(_val) {}
|
|
|
279 |
void operator()(const CGLA::Vec3i& pi, T& vox_val)
|
|
|
280 |
{
|
|
|
281 |
vox_val = val;
|
|
|
282 |
}
|
|
|
283 |
};
|
|
|
284 |
|
|
|
285 |
template<class G>
|
|
|
286 |
void clear_region(G& grid, const typename G::DataType& value)
|
|
|
287 |
{
|
|
|
288 |
_AssignFun<typename G::DataType> afun(value);
|
|
|
289 |
for_each_voxel(grid, afun);
|
|
|
290 |
}
|
|
|
291 |
|
|
|
292 |
template<class G>
|
|
|
293 |
void clear_region(G& grid,
|
|
|
294 |
const CGLA::Vec3i& p0,
|
|
|
295 |
const CGLA::Vec3i& p7,
|
|
|
296 |
const typename G::DataType& value)
|
|
|
297 |
{
|
|
|
298 |
_AssignFun<typename G::DataType>afun(value) ;
|
|
|
299 |
for_each_voxel(grid, p0, p7, afun);
|
|
|
300 |
}
|
|
|
301 |
|
|
|
302 |
|
|
|
303 |
//----------------------------------------------------------------------
|
|
|
304 |
// const versions.
|
|
|
305 |
|
|
|
306 |
/** Loop over all voxels in a sub-region (slice) of an
|
|
|
307 |
RGrid and invoke a functor on each voxel.
|
|
|
308 |
The grid is the first argument, the slice is
|
|
|
309 |
specified by the two subsequent args, and the functor
|
|
|
310 |
is the last argument. */
|
|
|
311 |
template<class T, class F>
|
|
|
312 |
void for_each_voxel_const(const RGrid<T>& grid,
|
|
|
313 |
const CGLA::Vec3i& p0,
|
|
|
314 |
const CGLA::Vec3i& p7,
|
|
|
315 |
F& functor)
|
|
|
316 |
{
|
|
|
317 |
_for_each_voxel(grid.get(), grid.get_x_dim(), grid.get_xy_dim(),
|
|
|
318 |
CGLA::v_max(p0, CGLA::Vec3i(0)),
|
|
|
319 |
CGLA::v_min(p7, grid.get_dims()),
|
|
|
320 |
functor);
|
|
|
321 |
}
|
|
|
322 |
|
|
|
323 |
/** Loop over all voxels in an entire RGrid.
|
|
|
324 |
Grid is the first argument, and a functor is
|
|
|
325 |
the second. For each voxel, an operation
|
|
|
326 |
specified by the functor is performed. */
|
|
|
327 |
template<class T, class F>
|
|
|
328 |
void for_each_voxel_const(const RGrid<T>& grid, F& functor)
|
|
|
329 |
{
|
|
|
330 |
_for_each_voxel(grid.get(), grid.get_dims(), functor);
|
|
|
331 |
}
|
|
|
332 |
|
|
|
333 |
|
|
|
334 |
/** For each voxel (ordered). The idea of ordered traversal is
|
|
|
335 |
that we traverse the volume in a systematic fashion as opposed
|
|
|
336 |
to traversing simply according to the memory layout of the volume
|
|
|
337 |
data structure. This is important e.g. if we want to save the
|
|
|
338 |
volume in raw format.
|
|
|
339 |
For an RGrid, there is no difference though.
|
|
|
340 |
*/
|
|
|
341 |
template<class T, class F>
|
|
|
342 |
void for_each_voxel_ordered_const(const RGrid<T>& grid,
|
|
|
343 |
const CGLA::Vec3i& p0,
|
|
|
344 |
const CGLA::Vec3i& p7,
|
|
|
345 |
F& functor)
|
|
|
346 |
{
|
|
|
347 |
_for_each_voxel(grid.get(), grid.get_x_dim(), grid.get_xy_dim(),
|
|
|
348 |
CGLA::v_max(p0, CGLA::Vec3i(0)),
|
|
|
349 |
CGLA::v_min(p7, grid.get_dims()),
|
|
|
350 |
functor);
|
|
|
351 |
}
|
|
|
352 |
|
|
|
353 |
template<class T, class F>
|
|
|
354 |
void for_each_voxel_ordered_const(const RGrid<T>& grid, F& functor)
|
|
|
355 |
{
|
|
|
356 |
_for_each_voxel(grid.get(), grid.get_dims(), functor);
|
|
|
357 |
}
|
|
|
358 |
|
|
|
359 |
|
|
|
360 |
template<class T, class CellT, class F>
|
|
|
361 |
void for_each_cell_const(const HGrid<T,CellT>& grid,
|
|
|
362 |
const CGLA::Vec3i& p0,
|
|
|
363 |
const CGLA::Vec3i& p7,
|
|
|
364 |
F& functor)
|
|
|
365 |
{
|
|
|
366 |
CGLA::Vec3i p0t = p0/grid.get_bottom_dim();
|
|
|
367 |
CGLA::Vec3i p7t = CGLA::v_min(p7/grid.get_bottom_dim()+
|
|
|
368 |
CGLA::Vec3i(1),
|
|
|
369 |
grid.get_top_dims());
|
|
|
370 |
for(CGLA::Vec3i pt(p0t); pt[2]<p7t[2]; ++pt[2])
|
|
|
371 |
for(pt[1]=p0t[1]; pt[1]<p7t[1]; ++pt[1])
|
|
|
372 |
for(pt[0]=p0t[0]; pt[0]<p7t[0]; ++pt[0])
|
|
|
373 |
functor(pt*CellT::get_dim(), grid.get_cell(pt));
|
|
|
374 |
}
|
|
|
375 |
|
|
|
376 |
template<class T, class CellT, class F>
|
|
|
377 |
void for_each_cell_const(const HGrid<T,CellT>& grid,
|
|
|
378 |
F& functor)
|
|
|
379 |
{
|
|
|
380 |
CGLA::Vec3i p0t;
|
|
|
381 |
CGLA::Vec3i p7t = grid.get_dims();
|
|
|
382 |
const int inc = CellT::get_dim();
|
|
|
383 |
int l=0;
|
|
|
384 |
for(CGLA::Vec3i pt(p0t); pt[2]<p7t[2]; pt[2]+=inc)
|
|
|
385 |
for(pt[1]=p0t[1]; pt[1]<p7t[1]; pt[1]+=inc)
|
|
|
386 |
for(pt[0]=p0t[0]; pt[0]<p7t[0]; pt[0]+=inc)
|
|
|
387 |
functor(pt, grid.get_cell(l++));
|
|
|
388 |
}
|
|
|
389 |
|
|
|
390 |
|
|
|
391 |
template<class CellT, class F>
|
|
|
392 |
class _HGridCellFunctorConst
|
|
|
393 |
{
|
|
|
394 |
const CGLA::Vec3i p0;
|
|
|
395 |
const CGLA::Vec3i p7;
|
|
|
396 |
F& functor;
|
|
|
397 |
|
|
|
398 |
public:
|
|
|
399 |
_HGridCellFunctorConst(const CGLA::Vec3i _p0,
|
|
|
400 |
const CGLA::Vec3i _p7,
|
|
|
401 |
F& _functor): p0(_p0), p7(_p7), functor(_functor) {}
|
|
|
402 |
|
|
|
403 |
void operator()(const CGLA::Vec3i& offset,
|
|
|
404 |
const CellT& cell)
|
|
|
405 |
{
|
|
|
406 |
CGLA::Vec3i p0c = CGLA::v_max(p0-offset, CGLA::Vec3i(0));
|
|
|
407 |
CGLA::Vec3i p7c = CGLA::v_min(p7-offset, CGLA::Vec3i(CellT::get_dim()));
|
|
|
408 |
|
|
|
409 |
if(cell.is_coalesced())
|
|
|
410 |
{
|
|
|
411 |
typename CellT::DataType val = *cell.get();
|
|
|
412 |
for(CGLA::Vec3i p(p0c); p[2]<p7c[2]; ++p[2])
|
|
|
413 |
for(p[1]=p0c[1]; p[1]<p7c[1]; ++p[1])
|
|
|
414 |
for(p[0]=p0c[0]; p[0]<p7c[0]; ++p[0])
|
|
|
415 |
functor(p+offset, val);
|
|
|
416 |
}
|
|
|
417 |
_for_each_voxel(cell.get(),
|
|
|
418 |
CellT::get_dim(),
|
|
|
419 |
CGLA::sqr(CellT::get_dim()),
|
|
|
420 |
p0c, p7c, functor, offset);
|
|
|
421 |
}
|
|
|
422 |
};
|
|
|
423 |
|
|
|
424 |
|
|
|
425 |
template<class T, class CellT, class F>
|
|
|
426 |
void for_each_voxel_const(const HGrid<T,CellT>& grid,
|
|
|
427 |
const CGLA::Vec3i& _p0,
|
|
|
428 |
const CGLA::Vec3i& _p7,
|
|
|
429 |
F& functor)
|
|
|
430 |
{
|
|
|
431 |
CGLA::Vec3i p0 = CGLA::v_max(_p0, CGLA::Vec3i(0));
|
|
|
432 |
CGLA::Vec3i p7 = CGLA::v_min(_p7, grid.get_dims());
|
|
|
433 |
_HGridCellFunctorConst<CellT,F> cell_functor(p0, p7, functor);
|
|
|
434 |
for_each_cell_const(grid, p0, p7, cell_functor);
|
|
|
435 |
}
|
|
|
436 |
|
|
|
437 |
template<class T, class CellT, class F>
|
|
|
438 |
void for_each_voxel_const(const HGrid<T,CellT>& grid, F& functor)
|
|
|
439 |
{
|
|
|
440 |
_HGridCellFunctorConst<CellT,F> cell_functor(CGLA::Vec3i(0),
|
|
|
441 |
grid.get_dims(), functor);
|
|
|
442 |
for_each_cell_const(grid, cell_functor);
|
|
|
443 |
}
|
|
|
444 |
|
|
|
445 |
template<class T, class CellT, class F>
|
|
|
446 |
void for_each_voxel_ordered_const(const HGrid<T,CellT>& grid,
|
|
|
447 |
const CGLA::Vec3i& _p0,
|
|
|
448 |
const CGLA::Vec3i& _p7,
|
|
|
449 |
F& functor)
|
|
|
450 |
{
|
|
|
451 |
CGLA::Vec3i p0 = CGLA::v_max(_p0, CGLA::Vec3i(0));
|
|
|
452 |
CGLA::Vec3i p7 = CGLA::v_min(_p7, grid.get_dims());
|
|
|
453 |
for(int k=p0[2];k<p7[2];++k)
|
|
|
454 |
for(int j=p0[1];j<p7[1];++j)
|
|
|
455 |
for(int i=p0[0];i<p7[0];++i)
|
|
|
456 |
{
|
|
|
457 |
CGLA::Vec3i p(i,j,k);
|
|
|
458 |
functor(p, grid[p]);
|
|
|
459 |
}
|
|
|
460 |
}
|
|
|
461 |
|
|
|
462 |
template<class T, class CellT, class F>
|
|
|
463 |
void for_each_voxel_ordered_const(const HGrid<T,CellT>& grid, F& functor)
|
|
|
464 |
{
|
|
|
465 |
for_each_voxel_ordered_const(grid,
|
|
|
466 |
CGLA::Vec3i(0),
|
|
|
467 |
grid.get_dims(),
|
|
|
468 |
functor);
|
|
|
469 |
}
|
|
|
470 |
|
|
|
471 |
|
|
|
472 |
}
|
|
|
473 |
|
|
|
474 |
#endif
|