Subversion Repositories gelsvn

Rev

Rev 89 | Rev 203 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
61 jab 1
#ifndef __KDTREE_H
2
#define __KDTREE_H
3
 
4
#include <cmath>
5
#include <iostream>
6
#include <vector>
7
#include <algorithm>
8
#include "CGLA/CGLA.h"
125 jab 9
#include "CGLA/ArithVec.h"
61 jab 10
 
11
namespace Geometry
12
{
89 jab 13
	/** \brief A classic K-D tree. 
14
 
61 jab 15
			A K-D tree is a good data structure for storing points in space
16
			and for nearest neighbour queries. It is basically a generalized 
17
			binary tree in K dimensions. */
18
	template<class KeyT, class ValT>
19
	class KDTree
20
	{
21
		typedef typename KeyT::ScalarType ScalarType;
22
		typedef KeyT KeyType;
23
		typedef std::vector<KeyT> KeyVectorType;
24
		typedef std::vector<ValT> ValVectorType;
25
 
26
		/// KDNode struct represents node in KD tree
27
		struct KDNode
28
		{
29
			KeyT key;
30
			ValT val;
31
			short dsc;
32
 
33
			KDNode(): dsc(0) {}
34
 
35
			KDNode(const KeyT& _key, const ValT& _val):
36
				key(_key), val(_val), dsc(-1) {}
37
 
38
			ScalarType dist(const KeyType& p) const 
39
			{
40
				KeyType dist_vec = p;
41
				dist_vec  -= key;
42
				return dot(dist_vec, dist_vec);
43
			}
44
		};
45
 
46
		typedef std::vector<KDNode> NodeVecType;
47
		NodeVecType init_nodes;
48
		NodeVecType nodes;
49
		bool is_built;
50
 
51
		/// The greatest depth of KD tree.
52
		int max_depth;
53
 
54
		/// Total number of elements in tree
55
		int elements;
56
 
57
		/** Comp is a class used for comparing two keys. Comp is constructed
58
				with the discriminator - i.e. the coordinate of the key that is used
59
				for comparing keys - Comp objects are passed to the sort algorithm.*/
60
		class Comp
61
		{
62
			const int dsc;
63
		public:
64
			Comp(int _dsc): dsc(_dsc) {}
65
			bool operator()(const KeyType& k0, const KeyType& k1) const
66
			{
67
				int dim=KeyType::get_dim();
68
				for(int i=0;i<dim;i++)
69
					{
70
						int j=(dsc+i)%dim;
71
						if(k0[j]<k1[j])
72
							return true;
73
						if(k0[j]>k1[j])
74
							return false;
75
					}
76
				return false;
77
			}
78
 
79
			bool operator()(const KDNode& k0, const KDNode& k1) const
80
			{
81
				return (*this)(k0.key,k1.key);
82
			}
83
		};
84
 
85
		/// The dimension -- K
86
		const int DIM;
87
 
88
		/** Passed a vector of keys, this function will construct an optimal tree.
89
				It is called recursively - second argument is level in tree. */
90
		void optimize(int, int, int, int);
91
 
92
		/** Finde nearest neighbour. */
93
		int closest_point_priv(int, const KeyType&, ScalarType&) const;
94
 
95
 
96
		void in_sphere_priv(int n, 
97
												const KeyType& p, 
98
												const ScalarType& dist,
99
												std::vector<KeyT>& keys,
100
												std::vector<ValT>& vals) const;
101
 
102
		/** Finds the optimal discriminator. There are more ways, but this 
103
				function traverses the vector and finds out what dimension has
104
				the greatest difference between min and max element. That dimension
105
				is used for discriminator */
106
		int opt_disc(int,int) const;
107
 
108
	public:
109
 
110
		/** Build tree from vector of keys passed as argument. */
111
		KDTree():
112
			is_built(false), max_depth(0), DIM(KeyType::get_dim()), elements(0)
113
		{
114
		}
115
 
116
		/** Insert a key value pair into the tree. Note that the tree needs to 
117
				be built - by calling the build function - before you can search. */
118
		void insert(const KeyT& key, const ValT& val)
119
		{
120
			assert(!is_built);
121
			init_nodes.push_back(KDNode(key,val));
122
		}
123
 
124
		/** Build the tree. After this function have been called, it is no longer 
125
				legal to insert elements, but you can perform searches. */
126
		void build()
127
		{
128
			assert(!is_built);
129
			nodes.resize(init_nodes.size()+1);
130
			if(init_nodes.size() > 0)	
131
				optimize(1,0,init_nodes.size(),0);
132
			NodeVecType v(0);
133
			init_nodes.swap(v);
134
			is_built = true;
135
		}
136
 
137
		/** Find the key value pair closest to the key given as first 
138
				argument. The second argument is the maximum search distance.
139
				The final two arguments contain the closest key and its 
140
				associated value upon return. */
141
		bool closest_point(const KeyT& p, float& dist, KeyT&k, ValT&v) const
142
		{
143
			assert(is_built);
144
			float max_sq_dist = CGLA::sqr(dist);
145
			if(int n = closest_point_priv(1, p, max_sq_dist))
146
				{
147
					k = nodes[n].key;
148
					v = nodes[n].val;
149
					dist = std::sqrt(max_sq_dist);
150
					return true;
151
				}
152
			return false;
153
		}
154
 
155
		/** Find all the elements within a given radius (second argument) of
156
				the key (first argument). The key value pairs inside the sphere are
157
				returned in a pair of vectors passed as the two last arguments. */
158
		int in_sphere(const KeyType& p, 
159
									float dist,
160
									std::vector<KeyT>& keys,
161
									std::vector<ValT>& vals) const
162
		{
163
			assert(is_built);
164
			float max_sq_dist = CGLA::sqr(dist);
165
			in_sphere_priv(1,p,max_sq_dist,keys,vals);
166
			return keys.size();
167
		}
168
 
169
 
170
	};
171
 
172
	template<class KeyT, class ValT>
173
	int KDTree<KeyT,ValT>::opt_disc(int kvec_beg,  
174
																	int kvec_end) const 
175
	{
176
		KeyType vmin = init_nodes[kvec_beg].key;
177
		KeyType vmax = init_nodes[kvec_beg].key;
178
		for(int i=kvec_beg;i<kvec_end;i++)
179
			{
180
				vmin = CGLA::v_min(vmin,init_nodes[i].key);
181
				vmax = CGLA::v_max(vmax,init_nodes[i].key);
182
			}
183
		int od=0;
184
		KeyType ave_v = vmax-vmin;
185
		for(int i=1;i<KeyType::get_dim();i++)
186
			if(ave_v[i]>ave_v[od]) od = i;
187
		return od;
188
	} 
189
 
190
	template<class KeyT, class ValT>
191
	void KDTree<KeyT,ValT>::optimize(int cur,
192
																	 int kvec_beg,  
193
																	 int kvec_end,  
194
																	 int level)
195
	{
196
		// Assert that we are not inserting beyond capacity.
197
		assert(cur < nodes.size());
198
 
199
		// If there is just a single element, we simply insert.
200
		if(kvec_beg+1==kvec_end) 
201
			{
202
				max_depth  = std::max(level,max_depth);
203
				nodes[cur] = init_nodes[kvec_beg];
204
				nodes[cur].dsc = -1;
205
				return;
206
			}
207
 
208
		// Find the axis that best separates the data.
209
		int disc = opt_disc(kvec_beg, kvec_end);
210
 
211
		// Compute the median element. See my document on how to do this
212
		// www.imm.dtu.dk/~jab/publications.html
213
		int N = kvec_end-kvec_beg;
214
		int M = 1<< (CGLA::two_to_what_power(N));
215
		int R = N-(M-1);
216
		int left_size  = (M-2)/2;
217
		int right_size = (M-2)/2;
218
		if(R < M/2)
219
			{
220
				left_size += R;
221
			}
222
		else
223
			{
224
				left_size += M/2;
225
				right_size += R-M/2;
226
			}
227
 
228
		int median = kvec_beg + left_size;
229
 
230
		// Sort elements but use nth_element (which is cheaper) than
231
		// a sorting algorithm. All elements to the left of the median
232
		// will be smaller than or equal the median. All elements to the right
233
		// will be greater than or equal to the median.
234
		const Comp comp(disc);
235
		std::nth_element(&init_nodes[kvec_beg], 
236
										 &init_nodes[median], 
237
										 &init_nodes[kvec_end], comp);
238
 
239
		// Insert the node in the final data structure.
240
		nodes[cur] = init_nodes[median];
241
		nodes[cur].dsc = disc;
242
 
243
		// Recursively build left and right tree.
244
		if(left_size>0)	
245
			optimize(2*cur, kvec_beg, median,level+1);
246
 
247
		if(right_size>0) 
248
			optimize(2*cur+1, median+1, kvec_end,level+1);
249
	}
250
 
251
	template<class KeyT, class ValT>
252
	int KDTree<KeyT,ValT>::closest_point_priv(int n, const KeyType& p, 
253
																						ScalarType& dist) const
254
	{
255
		int ret_node = 0;
256
		ScalarType this_dist = nodes[n].dist(p);
257
 
258
		if(this_dist<dist)
259
			{
260
				dist = this_dist;
261
				ret_node = n;
262
			}
263
		if(nodes[n].dsc != -1)
264
			{
265
				int dsc         = nodes[n].dsc;
266
				float dsc_dist  = CGLA::sqr(nodes[n].key[dsc]-p[dsc]);
267
				bool left_son   = Comp(dsc)(p,nodes[n].key);
268
 
269
				if(left_son||dsc_dist<dist)
270
					{
271
						int left_child = 2*n;
272
						if(left_child < nodes.size())
273
							if(int nl=closest_point_priv(left_child, p, dist))
274
								ret_node = nl;
275
					}
276
				if(!left_son||dsc_dist<dist)
277
					{
278
						int right_child = 2*n+1;
279
						if(right_child < nodes.size())
280
							if(int nr=closest_point_priv(right_child, p, dist))
281
								ret_node = nr;
282
					}
283
			}
284
		return ret_node;
285
	}
286
 
287
	template<class KeyT, class ValT>
288
	void KDTree<KeyT,ValT>::in_sphere_priv(int n, 
289
																				 const KeyType& p, 
290
																				 const ScalarType& dist,
291
																				 std::vector<KeyT>& keys,
292
																				 std::vector<ValT>& vals) const
293
	{
294
		ScalarType this_dist = nodes[n].dist(p);
295
		assert(n<nodes.size());
296
		if(this_dist<dist)
297
			{
298
				keys.push_back(nodes[n].key);
299
				vals.push_back(nodes[n].val);
300
			}
301
		if(nodes[n].dsc != -1)
302
			{
303
				const int dsc         = nodes[n].dsc;
304
				const float dsc_dist  = CGLA::sqr(nodes[n].key[dsc]-p[dsc]);
305
 
306
				bool left_son = Comp(dsc)(p,nodes[n].key);
307
 
308
				if(left_son||dsc_dist<dist)
309
					{
310
						int left_child = 2*n;
311
						if(left_child < nodes.size())
312
							in_sphere_priv(left_child, p, dist, keys, vals);
313
					}
314
				if(!left_son||dsc_dist<dist)
315
					{
316
						int right_child = 2*n+1;
317
						if(right_child < nodes.size())
318
							in_sphere_priv(right_child, p, dist, keys, vals);
319
					}
320
			}
321
	}
322
}
323
namespace GEO = Geometry;
324
 
325
#endif