Subversion Repositories gelsvn

Rev

Rev 595 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
595 jab 1
/* ----------------------------------------------------------------------- *
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
3
 * Copyright (C) the authors and DTU Informatics
4
 * For license and list of authors, see ../../doc/intro.pdf
5
 * ----------------------------------------------------------------------- */
39 bj 6
 
595 jab 7
/**
8
 * @file Manifold.h
9
 * @brief The Manifold class is the main data structure of HMesh - the actual mesh.
10
 */
39 bj 11
 
595 jab 12
#ifndef __HMESH_MANIFOLD_H__
13
#define __HMESH_MANIFOLD_H__
39 bj 14
 
595 jab 15
#include <algorithm>
16
#include <CGLA/Vec3d.h>
39 bj 17
 
595 jab 18
#include "ConnectivityKernel.h"
19
#include "Iterators.h"
20
#include "Walker.h"
21
#include "AttributeVector.h"
39 bj 22
 
23
 
595 jab 24
namespace Geometry
25
{
26
    // forward declaration
27
    class TriMesh;
28
    class IndexedFaceSet;
29
}
39 bj 30
 
595 jab 31
namespace HMesh
32
{
33
    /** The Manifold class represents a halfedge based mesh. Since meshes based on the halfedge
34
     representation must be manifold (although exceptions could be made) the class is thus named.
35
     Manifold contains many functions for mesh manipulation and associated the position attribute
36
     with vertices.*/
37
 
38
    class Manifold
39
    {
40
    public:
41
 
42
        /// Vector type used for positions of vertices.
43
        typedef CGLA::Vec3d Vec;
44
 
45
        /// Default constructor
46
        Manifold();
39 bj 47
 
595 jab 48
        /** \brief Build a manifold. 
49
        The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces. 
50
        facevecis an array where each entry indicates the number of vertices in that face. 
51
        The array indices contains all the corresponding vertex indices in one concatenated list. */
52
        void build( size_t no_vertices,
53
                    const float* vertvec,
54
                    size_t no_faces,
55
                    const int* facevec,
56
                    const int* indices);
178 bj 57
 
595 jab 58
        /** \brief Build a manifold.
59
         This function is for vertices given in double precision.
60
         The arguments are the number of vertices, no_vertices, the vector of vertices, vertvec, the number of faces, no_faces.
61
         facevecis an array where each entry indicates the number of vertices in that face.
62
         The array indices contains all the corresponding vertex indices in one concatenated list. */
63
        void build( size_t no_vertices,
64
                   const double* vertvec,
65
                   size_t no_faces,
66
                   const int* facevec,
67
                   const int* indices);
178 bj 68
 
595 jab 69
        /// Build a manifold from a TriMesh
70
        void build(const Geometry::TriMesh& mesh);
71
 
600 jab 72
        /** Add a face to the Manifold.
73
         This function is provided a vector of points in space and transforms it into a single 
74
         polygonal face calling build. It is purely for convenience. */
595 jab 75
        FaceID add_face(std::vector<Manifold::Vec> points);
39 bj 76
 
600 jab 77
        /** Removes a face from the Manifold. If it is an interior face it is simply replaces
78
         by an InvalidFaceID. If the face contains boundary edges, these are removed. Situations
79
         may arise where the mesh is no longer manifold because the situation at a boundary vertex
80
         is not homeomorphic to a half disk. This, we can probably ignore since from the data
81
         structure point of view it is not really a problem that a vertex is incident on two holes - 
82
        a hole can be seen as a special type of face. The function returns false if the FaceID is 
83
         not valid, otherwise the function must complete. */
84
        bool remove_face(FaceID fid);
85
 
86
        /** Remove an edge from the Manifold.
87
            This function will remove the faces on either side and the edge itself in the process. Thus,
88
         it is a simple application of remove_face. */
89
            bool remove_edge(HalfEdgeID hid);
90
 
91
        /** Remove a vertex from the Manifold.
92
         This function merges all faces around the vertex into one and then removes 
93
         this resulting face. */
94
        bool remove_vertex(VertexID vid);
595 jab 95
 
96
        /// number of  vertices
97
        size_t no_vertices() const { return kernel.no_vertices();}
98
        /// number of active faces
99
        size_t no_faces() const { return kernel.no_faces();}
100
        /// number of active halfedges
101
        size_t no_halfedges() const { return kernel.no_halfedges();}
102
 
103
        /// number of total vertices in kernel
104
        size_t allocated_vertices() const { return kernel.allocated_vertices();}
105
        /// number of total faces in kernel
106
        size_t allocated_faces() const { return kernel.allocated_faces();}
107
        /// number of total halfedges in kernel
108
        size_t allocated_halfedges() const { return kernel.allocated_halfedges();}
109
 
110
        /// check if ID of vertex is in use
111
        bool in_use(VertexID id) const { return kernel.in_use(id);}
112
        /// check if ID of face is in use
113
        bool in_use(FaceID id) const { return kernel.in_use(id);}
114
        /// check if ID of halfedge is in use
115
        bool in_use(HalfEdgeID id) const { return kernel.in_use(id);}
116
 
117
        /// Iterator to first VertexID, optional argument defines if unused items should be skipped
118
        VertexIDIterator vertices_begin(bool skip = true) const { return kernel.vertices_begin();}
119
        /// Iterator to first FaceID, optional argument defines if unused items should be skipped
120
        FaceIDIterator faces_begin(bool skip = true) const { return kernel.faces_begin();}
121
        /// Iterator to first HalfEdgeID, optional argument defines if unused items should be skipped
122
        HalfEdgeIDIterator halfedges_begin(bool skip = true) const { return kernel.halfedges_begin();}
123
 
124
        /// Iterator to past the end VertexID
125
        VertexIDIterator vertices_end() const { return kernel.vertices_end();}
126
        /// Iterator topast the end FaceID
127
        FaceIDIterator faces_end() const { return kernel.faces_end();}
128
        /// Iterator to past the end HalfEdgeID
129
        HalfEdgeIDIterator halfedges_end() const {return kernel.halfedges_end(); }  
39 bj 130
 
595 jab 131
 
132
		/** \brief Bridge f0 and f1 by connecting the vertex pairs given in pairs.
133
		 This function creates a cylindrical connection between f0 and f1. f0 and f1 are removed and the vertices 
134
		 given in pairs are connected by edges. The result is a cylindrical connection that changes the genus of the object.
135
 
136
		 This function leaves all error chethising in the hands of the user (for now). The faces clearly should not have any 
137
		 vertices or edges in common as this will create a non-manifold situation. Also the faces should face towards or away 
138
		 from each other and be in a position where it is reasonable to make the bridge. The connections should also make sense 
139
		 from a geometric point of view and should be in a counter clothiswise loop on f0 and a clothiswise loop on f1. No need to 
140
		 connect all vertices.
141
 
142
		 The function returns a vector of HalfEdgeIDs. Those are, of course, the connecting halfedges - also the opposite edges.
143
		 */
144
		std::vector<HalfEdgeID> bridge_faces(FaceID f0, FaceID f1, const std::vector<std::pair<VertexID, VertexID> >& pairs);
39 bj 145
 
146
 
595 jab 147
        /** \brief Collapse the halfedge h.
148
        The argument h is the halfedge being removed. The vertex v=h->opp->vert is the one being removed while h->vert survives.
149
        The final argument indicates whether the surviving vertex should have the average position of the former vertices.
150
        By default false meaning that the surviving vertex retains it position.
151
        This function is not guaranteed to keep the mesh sane unless, precond_collapse_edge has returned true !! */
152
        void collapse_edge(HalfEdgeID h, bool avg_vertices = false);
39 bj 153
 
595 jab 154
        /** \brief Split a face.
155
        The face, f, is split by creating an edge with endpoints v0 and v1 (the next two arguments). 
156
        The vertices of the old face between v0 and v1 (in counter clothiswise order) continue to belong to f. 
157
        The vertices between v1 and v0 belong to the new face. A handle to the new face is returned. */
158
        FaceID split_face_by_edge(FaceID f, VertexID v0, VertexID v1);
39 bj 159
 
595 jab 160
        /** \brief Split a polygon, f, by inserting a vertex at the barycenter.			
161
        This function is less likely to create flipped triangles than the split_face_triangulate function. 
162
        On the other hand, it introduces more vertices and probably makes the triangles more acute.
163
        A handle to the inserted vertex is returned. */
164
        VertexID split_face_by_vertex(FaceID f);
165
       // VertexID split_face_by_vertex(HalfEdgeID h);
39 bj 166
 
595 jab 167
        /** \brief Insert a new vertex on halfedge h.
168
        The new halfedge is insterted as the previous edge to h.
169
        A handle to the inserted vertex is returned. */
170
        VertexID split_edge(HalfEdgeID h);
171
 
172
        /** \brief Stitch two halfedges.
173
         Two boundary halfedges can be stitched together. This can be used to build a complex mesh
174
         from a bunch of simple faces. */
175
        bool stitch_boundary_edges(HalfEdgeID h0, HalfEdgeID h1);
39 bj 176
 
595 jab 177
        /** \brief Merges two faces into a single polygon. 
178
        The first face is f. The second face is adjacent to f along the halfedge h. 
179
        This function returns true if the merging was possible and false otherwise. 
180
        Currently merge only fails if the mesh is already illegal. Thus it should, in fact, never fail. */
181
        bool merge_faces(FaceID f, HalfEdgeID h);
182
 
183
		/** \brief Merge all faces in the one ring of a vertex into a single polygon.
184
		The vertex is given by v.
185
 
186
		The return value is the FaceID of the resulting polygonal face. 
187
		InvalidFaceID is returned if 
188
		- the input vertex is not in use or 
189
		- the input vertex has valence less than two which is a degenerate case.
190
		- the input vertex is a boundary vertex of valence two - i.e. adjacent to just one face.
191
		- the same halfedge appears in two faces of the one ring of the input vertex: I.e.
192
		the input vertex is twice adjacent to the same face!
193
 
194
		Note that this function can create some unusual and arguably degenerate meshes. For instance, 
195
		two triangles which share all vertices is collapsed to a single pair of vertices connected by 
196
		a pair of halfedges bounding the same face. */
197
		FaceID merge_one_ring(VertexID v, float max_loop_length = FLT_MAX);
39 bj 198
 
595 jab 199
        /** \brief Close hole given by the invalid face of halfedgehandle h.
200
         returns FaceID of the created face or the face that is already there if the 
201
         face was not InvalidFaceID. */
202
        FaceID close_hole(HalfEdgeID h);
39 bj 203
 
595 jab 204
        /// \brief Flip an edge h. 
205
        void flip_edge(HalfEdgeID h);
39 bj 206
 
595 jab 207
        /// Return reference to position given by VertexID
208
        Vec& pos(VertexID id);
209
        /// Return const reference to position given by VertexID
210
        const Vec& pos(VertexID id) const;
39 bj 211
 
595 jab 212
        /// Clear the mesh. Remove all faces, halfedges, and vertices.
213
        void clear();
39 bj 214
 
595 jab 215
        /// Remove unused items from Mesh, map argument is to be used for attribute vector cleanups in order to maintain sync.
216
        void cleanup(IDRemap& map);
217
        /// Remove unused items from Mesh
218
        void cleanup();
219
 
220
        /// Returns a Walker to the out halfedge of vertex given by VertexID
221
        Walker walker(VertexID id) const;
222
        /// Returns a Walker to the last halfedge of face given by FaceID
223
        Walker walker(FaceID id) const;
224
        /// Returns a Walker to the halfedge given by HalfEdgeID
225
        Walker walker(HalfEdgeID id) const;
226
 
39 bj 227
 
595 jab 228
    private:
229
 
230
        ConnectivityKernel kernel;
231
 
232
        VertexAttributeVector<Vec> positions;
39 bj 233
 
595 jab 234
        // private template for building the manifold from various types
235
        template<typename size_type, typename float_type, typename int_type>
236
        void build_template(size_type no_vertices,
237
                            const float_type* vertvec,
238
                            size_type no_faces,
239
                            const int_type* facevec,
240
                            const int_type* indices);
39 bj 241
 
595 jab 242
        /// Set the next and prev indices of the first and second argument respectively.
243
        void link(HalfEdgeID h0, HalfEdgeID h1);
113 jab 244
 
595 jab 245
        /// Glue halfedges by letting the opp indices point to each other.
246
        void glue(HalfEdgeID h0, HalfEdgeID h1);
136 jab 247
 
595 jab 248
        /// Auxiliary function called from collapse
249
        void remove_face_if_degenerate(HalfEdgeID h);
113 jab 250
 
595 jab 251
        /// Ensure boundary consistency.
252
        void ensure_boundary_consistency(VertexID v);
253
    };
113 jab 254
 
595 jab 255
    /** \brief Verify Manifold Integrity
256
    Performs a series of tests to chethis that this is a valid manifold.
257
    This function is not rigorously constructed but seems to catch all problems so far. 
258
    The function returns true if the mesh is valid and false otherwise. */
259
    bool valid(const Manifold& m);
113 jab 260
 
595 jab 261
    /// Calculate the bounding box of the manifold
262
    void bbox(const Manifold& m, Manifold::Vec& pmin, Manifold::Vec& pmax);
113 jab 263
 
595 jab 264
    /// Calculate the bounding sphere of the manifold
265
    void bsphere(const Manifold& m, Manifold::Vec& c, float& r);
113 jab 266
 
595 jab 267
    /** \brief Test for legal edge collapse.
268
    The argument h is the halfedge we want to collapse. 
269
    If this function does not return true, it is illegal to collapse h. 
270
    The reason is that the collapse would violate the manifold property of the mesh.
271
    The test is as follows:
272
    1.  For the two vertices adjacent to the edge, we generate a list of all their neighbouring vertices. 
273
    We then generate a  list of the vertices that occur in both these lists. 
274
    That is, we find all vertices connected by edges to both endpoints of the edge and store these in a list.
275
    2.  For both faces incident on the edge, chethis whether they are triangular. 
276
    If this is the case, the face will be removed, and it is ok that the the third vertex is connected to both endpoints. 
277
    Thus the third vertex in such a face is removed from the list generated in 1.
278
    3.  If the list is now empty, all is well. 
279
    Otherwise, there would be a vertex in the new mesh with two edges connecting it to the same vertex. Return false.
280
    4.  TETRAHEDRON TEST:
281
    If the valency of both vertices is three, and the incident faces are triangles, we also disallow the operation. 
282
    Reason: A vertex valency of two and two triangles incident on the adjacent vertices makes the construction collapse.
283
    5.  VALENCY 4 TEST:
284
    If a triangle is adjacent to the edge being collapsed, it disappears.
285
    This means the valency of the remaining edge vertex is decreased by one.
286
    A valency two vertex reduced to a valency one vertex is considered illegal.
287
    6.  PREVENT MERGING HOLES:
288
    Collapsing an edge with boundary endpoints and valid faces results in the creation where two holes meet.
289
    A non manifold situation. We could relax this...
290
	7. New test: if the same face is in the one-ring of both vertices but not adjacent to the common edge,
291
	then the result of a collapse would be a one ring where the same face occurs twice. This is disallowed as the resulting
292
	 face would be non-simple.	*/
293
    bool precond_collapse_edge(const Manifold& m, HalfEdgeID h);
113 jab 294
 
595 jab 295
    /** \brief Test fpr legal edge flip. 
296
    Returns false if flipping cannot be performed. This is due to one of following: 
297
    1.  one of the two adjacent faces is not a triangle. 
298
    2.  Either end point has valency three.
299
    3.  The vertices that will be connected already are. */
300
    bool precond_flip_edge(const Manifold& m, HalfEdgeID h);
113 jab 301
 
595 jab 302
    /// Returns true if the halfedge is a boundary halfedge.
303
    bool boundary(const Manifold& m, HalfEdgeID h);
113 jab 304
 
595 jab 305
    /// Return the geometric length of a halfedge.
306
    float length(const Manifold& m, HalfEdgeID h);
136 jab 307
 
595 jab 308
    /// Returns true if the vertex is a boundary vertex.
309
    bool boundary(const Manifold& m, VertexID v);
133 jab 310
 
595 jab 311
    /// Compute valency, i.e. number of incident edges.
312
    int valency(const Manifold& m, VertexID v);
39 bj 313
 
595 jab 314
    /// Compute the vertex normal. This function computes the angle weighted sum of incident face normals.
315
    Manifold::Vec normal(const Manifold& m, VertexID v);
39 bj 316
 
595 jab 317
    /// Returns true if the two argument vertices are in each other's one-rings.
318
    bool connected(const Manifold& m, VertexID v0, VertexID v1);
39 bj 319
 
595 jab 320
    /// Compute the number of edges of a face
321
    int no_edges(const Manifold& m, FaceID f);
39 bj 322
 
595 jab 323
    /** Compute the normal of a face. If the face is not a triangle,
324
    the normal is not defined, but computed using the first three
325
    vertices of the face. */
326
    Manifold::Vec normal(const Manifold& m, FaceID f);
136 jab 327
 
595 jab 328
    /// Compute the area of a face. 
329
    float area(const Manifold& m, FaceID f);
39 bj 330
 
595 jab 331
    /// Compute the perimeter of a face. 
332
    float perimeter(const Manifold& m, FaceID f);
39 bj 333
 
595 jab 334
    /// Compute the centre of a face
335
    Manifold::Vec centre(const Manifold& m, FaceID f);
39 bj 336
 
595 jab 337
    /*******************************************************************
338
    * Manifold code
339
    *******************************************************************/
39 bj 340
 
595 jab 341
    inline Manifold::Manifold(){}
39 bj 342
 
595 jab 343
    inline Manifold::Vec& Manifold::pos(VertexID id)
344
    { return positions[id]; }
345
    inline const Manifold::Vec& Manifold::pos(VertexID id) const
346
    { return positions[id]; }
39 bj 347
 
348
 
595 jab 349
    inline void Manifold::clear()
350
    { 
351
        kernel.clear();
352
        positions.clear();
353
    }
39 bj 354
 
595 jab 355
    inline Walker Manifold::walker(VertexID id) const
356
    { return Walker(kernel, kernel.out(id)); }
357
    inline Walker Manifold::walker(FaceID id) const
358
    { return Walker(kernel, kernel.last(id)); }
359
    inline Walker Manifold::walker(HalfEdgeID id) const
360
    { return Walker(kernel, id); }
39 bj 361
 
178 bj 362
 
595 jab 363
    inline void Manifold::cleanup(IDRemap& map)
364
    {   
365
        kernel.cleanup(map);
366
        positions.cleanup(map.vmap);
367
    }
368
 
369
    inline void Manifold::cleanup()
370
    {
371
        IDRemap map;
372
        Manifold::cleanup(map);
373
    }
374
}
178 bj 375
 
376
 
595 jab 377
#endif