Subversion Repositories gelsvn

Rev

Rev 595 | Rev 601 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 595 Rev 600
Line 2... Line 2...
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
2
 * This file is part of GEL, http://www.imm.dtu.dk/GEL
3
 * Copyright (C) the authors and DTU Informatics
3
 * Copyright (C) the authors and DTU Informatics
4
 * For license and list of authors, see ../../doc/intro.pdf
4
 * For license and list of authors, see ../../doc/intro.pdf
5
 * ----------------------------------------------------------------------- */
5
 * ----------------------------------------------------------------------- */
6
 
6
 
7
#include "caps_and_needles.h"
7
#include "cleanup.h"
8
 
8
 
9
#include <CGLA/Vec3f.h>
9
#include <CGLA/Vec3f.h>
10
#include <CGLA/Vec3d.h>
10
#include <CGLA/Vec3d.h>
11
#include <Geometry/QEM.h>
11
#include <Geometry/QEM.h>
-
 
12
#include <Geometry/KDTree.h>
12
 
13
 
13
#include "Manifold.h"
14
#include "Manifold.h"
14
 
15
 
15
namespace HMesh
16
namespace HMesh
16
{
17
{
17
    using namespace std;
18
    using namespace std;
18
    using namespace CGLA;
19
    using namespace CGLA;
19
    using namespace Geometry;
20
    using namespace Geometry;
20
 
21
    
21
    namespace
22
    namespace
22
    {
23
    {
23
        /// get the minimum angle between 3 vertices
24
        /// get the minimum angle between 3 vertices
24
        float min_angle(const Vec3d& v0, const Vec3d& v1, const Vec3d& v2)
25
        float min_angle(const Vec3d& v0, const Vec3d& v1, const Vec3d& v2)
25
        {
26
        {
26
            Vec3d a = normalize(v1-v0);
27
            Vec3d a = normalize(v1-v0);
27
            Vec3d b = normalize(v2-v1);
28
            Vec3d b = normalize(v2-v1);
28
            Vec3d c = normalize(v0-v2);
29
            Vec3d c = normalize(v0-v2);
29
 
30
            
30
            return min(dot(a, -c), min(dot(b, -a), dot(c, -b)));
31
            return min(dot(a, -c), min(dot(b, -a), dot(c, -b)));
31
        }
32
        }
32
 
33
        
33
        /// need description
34
        /// need description
34
        float edge_error(const Manifold& m, HalfEdgeID h, const Vec3d& pa, const Vec3d& pb)
35
        float edge_error(const Manifold& m, HalfEdgeID h, const Vec3d& pa, const Vec3d& pb)
35
        {
36
        {
36
            QEM q;
37
            QEM q;
37
            Walker j = m.walker(h);
38
            Walker j = m.walker(h);
38
 
39
            
39
            FaceID f = j.face();
40
            FaceID f = j.face();
40
            if(f != InvalidFaceID)
41
            if(f != InvalidFaceID)
41
                q += QEM(Vec3d(0), Vec3d(normal(m, f)));
42
                q += QEM(Vec3d(0), Vec3d(normal(m, f)));
42
 
43
            
43
            f = j.opp().face();
44
            f = j.opp().face();
44
            if(f != InvalidFaceID)
45
            if(f != InvalidFaceID)
45
                q += QEM(Vec3d(0), Vec3d(normal(m, f)));
46
                q += QEM(Vec3d(0), Vec3d(normal(m, f)));
46
 
47
            
47
            return q.error(pb - pa);
48
            return q.error(pb - pa);
48
        }
49
        }
49
 
50
        
50
        /// need description
51
        /// need description
51
        float vertex_error(const Manifold& m, VertexID v, const Vec3d& pb)
52
        float vertex_error(const Manifold& m, VertexID v, const Vec3d& pb)
52
        {
53
        {
53
            QEM q;
54
            QEM q;
54
            Vec3d pa(m.pos(v));
55
            Vec3d pa(m.pos(v));
55
 
56
            
56
            for(Walker vj = m.walker(v); !vj.full_circle(); vj = vj.circulate_vertex_cw()){
57
            for(Walker vj = m.walker(v); !vj.full_circle(); vj = vj.circulate_vertex_cw()){
57
                FaceID f = vj.face();
58
                FaceID f = vj.face();
58
                if(f != InvalidFaceID)
59
                if(f != InvalidFaceID)
59
                    q += QEM(Vec3d(0), Vec3d(normal(m, f)));
60
                    q += QEM(Vec3d(0), Vec3d(normal(m, f)));
60
            }
61
            }
61
            return q.error(pb - pa);
62
            return q.error(pb - pa);
62
        }
63
        }
63
    }
64
    }
64
 
65
    
65
    void remove_caps(Manifold& m, float thresh)
66
    void remove_caps(Manifold& m, float thresh)
66
    {
67
    {
67
        for(FaceIDIterator f = m.faces_begin(); f != m.faces_end(); ++f){
68
        for(FaceIDIterator f = m.faces_begin(); f != m.faces_end(); ++f){
68
            Vec3d p[3];
69
            Vec3d p[3];
69
            HalfEdgeID he[3];
70
            HalfEdgeID he[3];
70
            VertexID vh[3];
71
            VertexID vh[3];
71
 
72
            
72
            // store ids of vertices and halfedges and vertex positions of face
73
            // store ids of vertices and halfedges and vertex positions of face
73
            size_t n = 0;
74
            size_t n = 0;
74
            for(Walker fj = m.walker(*f); !fj.full_circle(); fj = fj.circulate_face_cw(), ++n){
75
            for(Walker fj = m.walker(*f); !fj.full_circle(); fj = fj.circulate_face_cw(), ++n){
75
                vh[n] = fj.vertex();
76
                vh[n] = fj.vertex();
76
                p[n] = Vec3d(m.pos(vh[n]));
77
                p[n] = Vec3d(m.pos(vh[n]));
77
 
-
 
-
 
78
                
78
                // original face circulator implementation returned next halfedge, jumper doesn't. Can this be optimized? 
79
                // original face circulator implementation returned next halfedge, jumper doesn't. Can this be optimized?
79
                he[n] = fj.halfedge();
80
                he[n] = fj.halfedge();
80
            }
81
            }
81
            assert(n == 3);
82
            assert(n == 3);
82
 
83
            
83
            // calculate the edge lengths of face
84
            // calculate the edge lengths of face
84
            bool is_collapsed = false;
85
            bool is_collapsed = false;
85
            Vec3d edges[3];
86
            Vec3d edges[3];
86
            for(size_t i = 0; i < 3; ++i){
87
            for(size_t i = 0; i < 3; ++i){
87
                edges[i] = p[(i+1)%3] - p[i];
88
                edges[i] = p[(i+1)%3] - p[i];
88
                float l = length(edges[i]);
89
                float l = length(edges[i]);
89
                if(l < 1e-20)
90
                if(l < 1e-20)
90
                    is_collapsed = true;    
91
                    is_collapsed = true;
91
                else
92
                else
92
                    edges[i] /= l;
93
                    edges[i] /= l;
93
 
-
 
-
 
94
                
94
            }
95
            }
95
            // an edge length was close to 1e-20, thus collapsed
96
            // an edge length was close to 1e-20, thus collapsed
96
            if(is_collapsed)
97
            if(is_collapsed)
97
                continue;
98
                continue;
98
 
99
            
99
            for(size_t i = 0; i < 3; ++i){
100
            for(size_t i = 0; i < 3; ++i){
100
                float ang = acos(max(-1.0, min(1.0, dot(-edges[(i+2)%3], edges[i]))));
101
                float ang = acos(max(-1.0, min(1.0, dot(-edges[(i+2)%3], edges[i]))));
101
 
-
 
-
 
102
                
102
                // flip long edge of current face if angle exceeds cap threshold and result is better than current cap
103
                // flip long edge of current face if angle exceeds cap threshold and result is better than current cap
103
                if(ang > thresh){
104
                if(ang > thresh){
104
                    size_t iplus1 = (i+1)%3;
105
                    size_t iplus1 = (i+1)%3;
105
                    Vec3d edge_dir = edges[iplus1];
106
                    Vec3d edge_dir = edges[iplus1];
106
 
-
 
-
 
107
                    
107
                    Walker j = m.walker(he[iplus1]);
108
                    Walker j = m.walker(he[iplus1]);
108
                    Vec3d v0(m.pos(j.vertex()));
109
                    Vec3d v0(m.pos(j.vertex()));
109
                    Vec3d v1(m.pos(j.next().vertex()));
110
                    Vec3d v1(m.pos(j.next().vertex()));
110
                    Vec3d v2(m.pos(j.opp().vertex()));
111
                    Vec3d v2(m.pos(j.opp().vertex()));
111
                    Vec3d v3(m.pos(j.opp().next().vertex()));
112
                    Vec3d v3(m.pos(j.opp().next().vertex()));
112
 
-
 
-
 
113
                    
113
                    float m1 = min(min_angle(v0, v1, v2), min_angle(v0, v2, v3));
114
                    float m1 = min(min_angle(v0, v1, v2), min_angle(v0, v2, v3));
114
                    float m2 = min(min_angle(v0, v1, v3), min_angle(v1, v2, v3));
115
                    float m2 = min(min_angle(v0, v1, v3), min_angle(v1, v2, v3));
115
 
-
 
-
 
116
                    
116
                    if(m1 < m2){
117
                    if(m1 < m2){
117
						// If the "cap vertex" projected onto the long edge is better in the 
118
						// If the "cap vertex" projected onto the long edge is better in the
118
						// sense that there is less geometric error after the flip, then we 
119
						// sense that there is less geometric error after the flip, then we
119
						// use the projected vertex. In other words, we see if it pays to snap
120
						// use the projected vertex. In other words, we see if it pays to snap
120
						// to the edge.
121
						// to the edge.
121
						Vec3d pprj = edge_dir * dot(edge_dir, p[i]-p[iplus1])+p[iplus1];
122
						Vec3d pprj = edge_dir * dot(edge_dir, p[i]-p[iplus1])+p[iplus1];
122
                        if(edge_error(m, he[iplus1], pprj, Vec3d(m.pos(vh[i]))) > vertex_error(m, vh[i], pprj))
123
                        if(edge_error(m, he[iplus1], pprj, Vec3d(m.pos(vh[i]))) > vertex_error(m, vh[i], pprj))
123
                            m.pos(vh[i]) = pprj;
124
                            m.pos(vh[i]) = pprj;
Line 127... Line 128...
127
                        break;
128
                        break;
128
                    }
129
                    }
129
                }
130
                }
130
            }
131
            }
131
        }
132
        }
132
 
133
        
133
    }
134
    }
134
 
135
    
135
    void remove_needles(Manifold& m, float thresh)
136
    void remove_needles(Manifold& m, float thresh)
136
    {
137
    {
137
        bool did_work = false;
138
        bool did_work = false;
138
 
139
        
139
        // remove needles until no more can be removed
140
        // remove needles until no more can be removed
140
        do{
141
        do{
141
            did_work = false;
142
            did_work = false;
142
            for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
143
            for(VertexIDIterator v = m.vertices_begin(); v != m.vertices_end(); ++v){
143
                // don't attempt to remove needles if vertex is boundary
144
                // don't attempt to remove needles if vertex is boundary
144
                if(boundary(m, *v))
145
                if(boundary(m, *v))
145
                    continue;
146
                    continue;
146
 
-
 
-
 
147
                
147
                for(Walker vj = m.walker(*v); !vj.full_circle(); vj = vj.circulate_vertex_cw()){
148
                for(Walker vj = m.walker(*v); !vj.full_circle(); vj = vj.circulate_vertex_cw()){
148
                    // don't attempt to remove needles if vertex of jumper halfedge is boundary
149
                    // don't attempt to remove needles if vertex of jumper halfedge is boundary
149
   //                 if(boundary(m, vj.vertex()))
150
                    //                 if(boundary(m, vj.vertex()))
150
//                        continue;
151
                    //                        continue;
151
 
-
 
-
 
152
                    
152
                    HalfEdgeID h = vj.opp().halfedge();
153
                    HalfEdgeID h = vj.opp().halfedge();
153
//                    VertexID n = vj.vertex();
154
                    //                    VertexID n = vj.vertex();
154
                    float dist = length(m, h);
155
                    float dist = length(m, h);
155
 
-
 
-
 
156
                    
156
                    // collapse edge if allowed and needle is present
157
                    // collapse edge if allowed and needle is present
157
                    if(dist < thresh && precond_collapse_edge(m, h)){
158
                    if(dist < thresh && precond_collapse_edge(m, h)){
158
//                        if(vertex_error(m, *v, Vec3d(m.pos(n))) < vertex_error(m, n, Vec3d(m.pos(*v))))
159
                        //                        if(vertex_error(m, *v, Vec3d(m.pos(n))) < vertex_error(m, n, Vec3d(m.pos(*v))))
159
//                            m.pos(*v) = m.pos(n);
160
                        //                            m.pos(*v) = m.pos(n);
160
                        m.collapse_edge(h);
161
                        m.collapse_edge(h);
161
                        did_work = true;
162
                        did_work = true;
162
                        break;
163
                        break;
163
                    }
164
                    }
164
                }
165
                }
165
            }
166
            }
166
        }
167
        }
167
        while(did_work);
168
        while(did_work);
168
    }
169
    }
-
 
170
    
-
 
171
    int stitch_mesh(Manifold& m)
-
 
172
    {
-
 
173
        KDTree<Vec3d, VertexID> vtree;
-
 
174
        
-
 
175
        for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
-
 
176
            if(boundary(m, *vid))
-
 
177
                vtree.insert(m.pos(*vid), *vid);
-
 
178
        vtree.build();
-
 
179
        
-
 
180
        VertexAttributeVector<int> cluster_id(m.allocated_vertices(),-1);
-
 
181
        vector<vector<HalfEdgeID> > clustered_halfedges;
-
 
182
        
-
 
183
        int cluster_ctr=0;
-
 
184
        for(VertexIDIterator vid = m.vertices_begin(); vid != m.vertices_end(); ++vid)
-
 
185
            if(boundary(m, *vid) && cluster_id[*vid] == -1)
-
 
186
            {
-
 
187
                vector<Vec3d> keys;
-
 
188
                vector<VertexID> vals;
-
 
189
                int n = vtree.in_sphere(m.pos(*vid), 1e-5, keys, vals);
-
 
190
                
-
 
191
                vector<HalfEdgeID> boundary_edges;
-
 
192
                for(int i=0;i<n;++i)
-
 
193
                {
-
 
194
                    cluster_id[vals[i]] = cluster_ctr;
-
 
195
                    Walker w = m.walker(vals[i]);
-
 
196
                    boundary_edges.push_back(w.halfedge());
-
 
197
                }
-
 
198
                clustered_halfedges.push_back(boundary_edges);
-
 
199
                ++cluster_ctr;
-
 
200
            }
-
 
201
        
-
 
202
        int unstitched=0;
-
 
203
        for(HalfEdgeIDIterator hid = m.halfedges_begin(); hid != m.halfedges_end(); ++hid)
-
 
204
        {
-
 
205
            HalfEdgeID h0 = *hid;
-
 
206
            Walker w = m.walker(h0);
-
 
207
            if(w.face() == InvalidFaceID)
-
 
208
            {
-
 
209
                VertexID v0 = w.opp().vertex();
-
 
210
                VertexID v1 = w.vertex();
-
 
211
                
-
 
212
                int cid = cluster_id[v1];
-
 
213
                vector<HalfEdgeID>& stitch_candidates = clustered_halfedges[cid];
-
 
214
                int i=0;
-
 
215
                for(;i<stitch_candidates.size(); ++i)
-
 
216
                {
-
 
217
                    HalfEdgeID h1 = stitch_candidates[i];
-
 
218
                    if(m.in_use(h1))
-
 
219
                    {
-
 
220
                        Walker w = m.walker(h1);
-
 
221
                        if(cluster_id[w.vertex()] == cluster_id[v0])
-
 
222
                            if(m.stitch_boundary_edges(h0,h1))
-
 
223
                                break;
-
 
224
                    }
-
 
225
                    
-
 
226
                }
-
 
227
                if(i == stitch_candidates.size())
-
 
228
                    ++unstitched;
-
 
229
            }
-
 
230
        }
-
 
231
        return unstitched;    
-
 
232
    }
-
 
233
    
-
 
234
    
-
 
235
    void stitch_more(Manifold& mani)
-
 
236
    {
-
 
237
        int unstitched, iter;
-
 
238
        for(iter=0;iter<2;++iter)
-
 
239
        {
-
 
240
            unstitched = stitch_mesh(mani);
-
 
241
            if(unstitched == 0)
-
 
242
                break;
-
 
243
            
-
 
244
            vector<HalfEdgeID> hvec;
-
 
245
            for(HalfEdgeIDIterator h = mani.halfedges_begin(); h != mani.halfedges_end();++h)
-
 
246
                if(mani.walker(*h).face() == InvalidFaceID)
-
 
247
                    hvec.push_back(*h);
-
 
248
            for(int i=0;i<hvec.size(); ++i)
-
 
249
                mani.split_edge(hvec[i]);
-
 
250
            
-
 
251
        }
-
 
252
    }
-
 
253
    
-
 
254
    
-
 
255
    void close_holes(Manifold& m)
-
 
256
    {
-
 
257
        for(HalfEdgeIDIterator h =  m.halfedges_begin(); h != m.halfedges_end(); ++h){
-
 
258
            m.close_hole(*h);
-
 
259
        }
-
 
260
    }
-
 
261
    
169
}
262
}
170
 
263