Subversion Repositories seema-scanner

Rev

Rev 243 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
214 jakw 1
function MSE = alignSubScansMarkers(calibrationFileName, alnFileName)
204 jakw 2
%ALIGNSUBSCANSMARKERS Determines an exact alignment of sub scans (scans
3
% from e.g. one revolution of the rotation stage). 
212 jakw 4
% The method searches for circular white markers of a specific diameter.
204 jakw 5
% White frames corresponding to each sub scan must be available.
209 jakw 6
% A coarse alignment in the form of an aln-file must be provided. 
204 jakw 7
%
8
% 2017 Jakob Wilm, DTU
9
 
209 jakw 10
initialAlign = readMeshLabALN(alnFileName);
237 jakw 11
[alnFilePath, ~, ~] = fileparts(alnFileName);
209 jakw 12
 
211 jakw 13
calibration = readOpenCVXML(calibrationFileName);
14
 
216 jakw 15
% correct for Matlab 1-indexing in principle point coordinates
16
calibration.K0(1:2, 3) = calibration.K0(1:2, 3)+1;
17
calibration.K1(1:2, 3) = calibration.K1(1:2, 3)+1;
18
 
211 jakw 19
% full projection matrices in Matlab convention
20
P0 = transpose(calibration.K0*[eye(3) zeros(3,1)]);
21
P1 = transpose(calibration.K1*[calibration.R1 calibration.T1']);
22
 
23
% matlab cam params for undistortion
24
camParams0 = cameraParameters('IntrinsicMatrix', calibration.K0', 'RadialDistortion', calibration.k0([1 2 5]), 'TangentialDistortion', calibration.k0([3 4]));
25
camParams1 = cameraParameters('IntrinsicMatrix', calibration.K1', 'RadialDistortion', calibration.k1([1 2 5]), 'TangentialDistortion', calibration.k1([3 4]));
26
 
27
% matlab struct for triangulation
28
camStereoParams = stereoParameters(camParams0, camParams1, calibration.R1', calibration.T1');
29
 
214 jakw 30
nSubScans = length(initialAlign);
241 jakw 31
%nSubScans = 5;
209 jakw 32
 
211 jakw 33
% 3D coordinates of markers in local camera frame
34
E = cell(nSubScans, 1);
35
 
36
% 3D coordinates of markers in global initial alignment
37
Eg = cell(size(E));
38
 
39
% find 3D markers coordinates 
209 jakw 40
for i=1:nSubScans
211 jakw 41
    % load point cloud
237 jakw 42
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
43
    pcFilePath = fileparts(pcFileName);
44
    pc = pcread(pcFileName);
211 jakw 45
    Q = pc.Location;
214 jakw 46
    idString = strsplit(initialAlign(i).FileName, {'.ply', '_'});
47
    idString = idString{end-1};
209 jakw 48
 
211 jakw 49
    % load white frames
237 jakw 50
    frame0 = imread(fullfile(pcFilePath, ['sequence_' idString], 'frames0_0.png'));
51
    frame1 = imread(fullfile(pcFilePath, ['sequence_' idString], 'frames1_0.png'));
211 jakw 52
 
237 jakw 53
    e0Coords = autoDetectMarkers(frame0);
54
    e1Coords = autoDetectMarkers(frame1);
209 jakw 55
 
237 jakw 56
    %e0Coords = manuallyDetectMarkers(frame0);
57
    %e1Coords = manuallyDetectMarkers(frame1);
210 jakw 58
 
237 jakw 59
    %[e0Coords, conf0] = detectMarkersSubpix(frame0, e0Coords, P0, Q);
60
    %[e1Coords, conf1] = detectMarkersSubpix(frame1, e1Coords, P1, Q);
61
 
62
    if(length(e0Coords) < 1 || length(e1Coords) < 1)
63
        continue;
64
    end
65
 
66
%     figure; 
67
%     subplot(1,2,1);
68
%     imshow(frame0);
69
%     hold('on');
70
%     plot(e0Coords(:,1), e0Coords(:,2), 'rx', 'MarkerSize', 15);
71
%     subplot(1,2,2);
72
%     imshow(frame1);
73
%     hold('on');
74
%     plot(e1Coords(:,1), e1Coords(:,2), 'rx', 'MarkerSize', 15);
75
%     drawnow;
76
 
241 jakw 77
    e0CoordsUndistort = undistortPointsFast(e0Coords, camParams0);
78
    e1CoordsUndistort = undistortPointsFast(e1Coords, camParams1);
211 jakw 79
 
80
    % match ellipse candidates between cameras based on projection
241 jakw 81
    E0 = projectOntoPointCloud(e0CoordsUndistort, P0, Q);
82
    E1 = projectOntoPointCloud(e1CoordsUndistort, P1, Q);
211 jakw 83
 
84
    matchedPairs = nan(size(E0, 1), 2);
85
    nMatchedPairs = 0;
86
    for j=1:size(E0, 1)
87
 
88
        % should use pdist2 instead..
89
        sqDists = sum((E1 - repmat(E0(j,:), size(E1, 1), 1)).^2, 2);
90
 
91
        [minSqDist, minSqDistIdx] = min(sqDists);
92
 
241 jakw 93
        if(minSqDist < 2^2)
211 jakw 94
            nMatchedPairs = nMatchedPairs + 1;
95
            matchedPairs(nMatchedPairs, :) = [j, minSqDistIdx];
96
        end
97
    end
98
    matchedPairs = matchedPairs(1:nMatchedPairs, :);
209 jakw 99
 
237 jakw 100
    figure; 
101
    subplot(1,2,1);
102
    imshow(frame0);
103
    hold('on');
104
    plot(e0Coords(matchedPairs(:, 1),1), e0Coords(matchedPairs(:, 1),2), 'rx', 'MarkerSize', 15);
105
    subplot(1,2,2);
106
    imshow(frame1);
107
    hold('on');
108
    plot(e1Coords(matchedPairs(:, 2),1), e1Coords(matchedPairs(:, 2),2), 'rx', 'MarkerSize', 15);
109
    drawnow;
110
 
238 jakw 111
%     % triangulate marker centers (lens correction has been performed)
112
%     [E{i}, e] = triangulate(e0Coords(matchedPairs(:, 1),:), e1Coords(matchedPairs(:, 2),:), camStereoParams);
113
%     E{i} = E{i}(e<3.0, :);
114
%     display(e);
115
 
116
    [E{i}, e] = detectMarkersStereoSubpix(frame0, frame1, E0(matchedPairs(:, 1), :), camStereoParams, pc);
218 jakw 117
    display(e);
209 jakw 118
 
216 jakw 119
    % write point cloud with marker (debugging)
241 jakw 120
    %pcDebug = pointCloud([pc.Location; E{i}], 'Color', [pc.Color; repmat([255, 0, 0], size(E{i}, 1), 1)]);
121
    %pcwrite(pcDebug, 'pcDebug.ply');
216 jakw 122
 
123
    % bring markers into initial alignment
211 jakw 124
    [U,~,V] = svd(initialAlign(i).Rotation);
125
    Ri = U*V';
126
    Ti = initialAlign(i).Translation;
209 jakw 127
 
211 jakw 128
    Eg{i} = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
129
end
130
 
212 jakw 131
% show found markers in initial alignment
132
figure;
133
hold('on');
211 jakw 134
for i=1:nSubScans
243 jakw 135
 
211 jakw 136
    % bring point cloud into initial alignment
237 jakw 137
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
138
    pc = pcread(pcFileName);
243 jakw 139
%     tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
140
%     pcg = pctransform(pc, tform);
141
    pcg = pointCloud(pc.Location * initialAlign(i).Rotation' + initialAlign(i).Translation', 'Color', pc.Color);
212 jakw 142
 
211 jakw 143
    pcshow(pcg);
144
    xlabel('x');
145
    ylabel('y');
146
    zlabel('z');
212 jakw 147
 
148
    plot3(Eg{i}(:,1), Eg{i}(:,2), Eg{i}(:,3), '.', 'MarkerSize', 15);
213 jakw 149
    title('Initial Alignment');
204 jakw 150
end
151
 
212 jakw 152
% match markers between poses using initial alignment
153
Pg = {};
154
P = {};
155
for i=1:nSubScans
156
    for j=1:size(Eg{i}, 1)
157
        pg = Eg{i}(j,:);
158
        p = E{i}(j,:);
159
        matched = false;
160
        for k=1:size(Pg, 2)
161
            clusterCenter = mean(cat(1, Pg{:,k}), 1);
162
            if(sum((pg - clusterCenter).^2) < 3^2)
163
                % store in global frame
164
                Pg{i,k} = pg;
165
                % store in local frame
166
                P{i,k} = p;
167
                matched = true;
168
                break;
169
            end
170
        end
171
        % create new cluster
172
        if(not(matched))
173
            Pg{i,end+1} = pg;
174
            P{i,end+1} = p;
175
        end 
176
    end
177
end
211 jakw 178
 
212 jakw 179
% run optimization
180
alignment = groupwiseOrthogonalProcrustes(P, initialAlign);
181
 
213 jakw 182
% show found markers in optimized alignment
183
figure;
184
hold('on');
185
for i=1:nSubScans
218 jakw 186
    % fix Ri to be orthogonal
241 jakw 187
    %[U,~,V] = svd(alignment(i).Rotation);
188
    %Ri = U*V';
189
    Ri = alignment(i).Rotation;
213 jakw 190
    Ti = alignment(i).Translation;
191
 
192
    Ea = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
193
 
194
    % bring point cloud into optimized alignment
241 jakw 195
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
196
    pc = pcread(pcFileName);
243 jakw 197
%     tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
198
%     pcg = pctransform(pc, tform);
199
    pcg = pointCloud(pc.Location * alignment(i).Rotation' + alignment(i).Translation', 'Color', pc.Color);
200
 
213 jakw 201
    pcshow(pcg);
202
    xlabel('x');
203
    ylabel('y');
204
    zlabel('z');
205
 
206
    plot3(Ea(:,1), Ea(:,2), Ea(:,3), '.', 'MarkerSize', 15);
207
    title('Optimized Alignment');
208
end
209
 
210
% write to ALN file
212 jakw 211
for i=1:length(alignment)
212
    alignment(i).FileName = initialAlign(i).FileName;
209 jakw 213
end
214
 
214 jakw 215
writeMeshLabALN(alignment, strrep(alnFileName, '.aln', 'Optimized.aln'));
211 jakw 216
 
212 jakw 217
end
218
 
213 jakw 219
function e = autoDetectMarkers(frame, P, pointCloud)
212 jakw 220
 
211 jakw 221
    % create mask based on morphology
236 jakw 222
    g = rgb2gray(frame);
246 jakw 223
    g(2475:end, :) = 0;
237 jakw 224
    % g(g>254) = 0;
225
    % bw = imbinarize(g, 'adaptive', 'Sensitivity', 10^(-50));
226
    bw = imbinarize(g, 0.10);
211 jakw 227
    cc = bwconncomp(bw);
228
    rp = regionprops(cc, 'Area', 'Solidity', 'Eccentricity', 'Centroid');
213 jakw 229
    idx = ([rp.Area] > 100 & [rp.Area] < 1000 & [rp.Solidity] > 0.9);
211 jakw 230
 
237 jakw 231
    e = cat(1, rp(idx).Centroid);
213 jakw 232
 
211 jakw 233
end
234
 
213 jakw 235
function e = manuallyDetectMarkers(frame, P, pointCloud)
211 jakw 236
 
212 jakw 237
    e = [];
213 jakw 238
	%edges = edge(rgb2gray(frame), 'Canny', [0.08 0.1], 2);
212 jakw 239
 
211 jakw 240
    figure; 
212 jakw 241
    hold('on');
211 jakw 242
    imshow(frame);
212 jakw 243
    title('Close figure to end.');
244
    set(gcf, 'pointer', 'crosshair'); 
245
    set(gcf, 'WindowButtonDownFcn', @clickCallback);
246
 
247
    uiwait;
211 jakw 248
 
213 jakw 249
    function clickCallback(caller, ~)
212 jakw 250
 
251
        p = get(gca, 'CurrentPoint'); 
252
        p = p(1, 1:2);
211 jakw 253
 
237 jakw 254
        e = [e; p(:, 1:2)];
213 jakw 255
 
256
        if(not(isempty(el)))
257
            figure(caller);
258
            hold('on');
259
            plot(el(1), el(2), 'rx', 'MarkerSize', 15);
260
        end
212 jakw 261
    end
262
 
263
end
211 jakw 264
 
212 jakw 265
function [e, conf] = detectMarkersSubpix(frame, initGuesses, P, Q)
237 jakw 266
% Detect a marker in a single frame by rectifying to the image and
267
% performing image registration.
211 jakw 268
 
212 jakw 269
    % create mask based on morphology
236 jakw 270
    g = rgb2gray(frame);
271
    g(g>254) = 0;
272
    bw = imbinarize(g);
212 jakw 273
    cc = bwconncomp(bw);
274
    labels = labelmatrix(cc);
211 jakw 275
 
212 jakw 276
    % project point cloud into image
277
    q = [Q ones(size(Q,1),1)]*P;
278
    q = q./[q(:,3) q(:,3) q(:,3)];
279
 
213 jakw 280
    e = zeros(size(initGuesses));
281
    conf = zeros(size(initGuesses, 1), 1);
282
 
283
    nMarkersFound = 0;
284
 
212 jakw 285
    for i=1:size(initGuesses, 1)
286
 
287
        labelId = labels(round(initGuesses(i,2)), round(initGuesses(i,1)));
288
        labelMask = (labels == labelId);
289
        labelMask = imdilate(labelMask, strel('disk', 3, 0));
290
 
213 jakw 291
        if(sum(sum(labelMask)) < 10 || sum(sum(labelMask)) > 1000)
292
            continue;
293
        end
294
 
212 jakw 295
        % determine 3D points that are part of the marker
213 jakw 296
        % note: we should probably undistort labelMask
212 jakw 297
        pointMask = false(size(q, 1), 1);
298
        for j=1:size(q,1)
215 jakw 299
            if(round(q(j,2)) > size(labelMask, 1) || round(q(j,1)) > size(labelMask, 2) || round(q(j,2)) < 1 || round(q(j,1)) < 1)
300
                continue;
301
            end
302
 
212 jakw 303
            if(labelMask(round(q(j,2)), round(q(j,1))))
304
                pointMask(j) = true;
305
            end
306
        end
307
 
215 jakw 308
        if(sum(pointMask)) < 10
213 jakw 309
            continue;
310
        end
212 jakw 311
 
213 jakw 312
        % project 3D points onto local plane
313
        [~, sc, ~] = pca(Q(pointMask, :));
314
        Qlocal = sc(:, 1:2);
315
 
316
        % synthetic marker in high res. space
317
        m = zeros(151, 151);
318
        [x, y] = meshgrid(1:151, 1:151);
319
        m((x(:)-76).^2 + (y(:)-76).^2 <= 50^2) = 1.0;
320
 
321
        % relation between marker space (px) and true marker/local plane(mm)
322
        % true marker diameter is 1.75mm
236 jakw 323
        mScale = 101/1.4; %px/mm
213 jakw 324
        mShift = 76; %px
325
 
326
        % build homography from image to marker space
236 jakw 327
        H = fitgeotrans(q(pointMask, 1:2), mScale*Qlocal+mShift,  'projective');
328
        %Hdlt = Hest_DLT([mScale*Qlocal+mShift, ones(size(Qlocal, 1), 1)]', q(pointMask,:)');
329
        %H = projective2d(Hdlt');
213 jakw 330
 
331
        % bring image of marker into marker space
332
        imMarkerSpace = imwarp(frame, H, 'OutputView', imref2d(size(m)));
333
        imMarkerSpace = rgb2gray(im2double(imMarkerSpace));
334
 
335
        %figure; imshowpair(imMarkerSpace, m);
336
 
337
        % perform image registration
214 jakw 338
        % might be better off using subpixel image correlation
339
        [opt, met] = imregconfig('multimodal');
218 jakw 340
        T = imregtform(m, imMarkerSpace, 'translation', opt, met, 'DisplayOptimization', false);
213 jakw 341
 
342
        rege = imwarp(m, T, 'OutputView', imref2d(size(m)));
343
        %figure; imshowpair(imMarkerSpace, rege);
344
 
345
        % measure of correlation
346
        confI = sum(sum(imMarkerSpace .* rege))/sqrt(sum(sum(imMarkerSpace) * sum(sum(rege))));
236 jakw 347
        %confI = 1.0;
213 jakw 348
 
349
        if confI<0.4
350
            continue;
351
        end
352
 
353
        fprintf('Found marker with confidence: %f\n', confI);
354
 
355
        % transform marker space coordinates (76,76) to frame space
356
        el = T.transformPointsForward([76, 76]);
357
        el = H.transformPointsInverse(el);
358
 
359
        nMarkersFound = nMarkersFound+1;
360
        e(nMarkersFound,:) = el;
361
        conf(nMarkersFound) = confI;
211 jakw 362
    end
363
 
213 jakw 364
    e = e(1:nMarkersFound, :);
365
    conf = conf(1:nMarkersFound);
211 jakw 366
end
367
 
238 jakw 368
function [E, conf] = detectMarkersStereoSubpix(frame0, frame1, initGuesses, camStereoParams, pc)
369
% Detect a marker in stereo frame set by minimizing the difference to
370
% projected images of 3d marker
371
 
372
    normals = pcnormals(pc, 6);
239 jakw 373
 
374
    frame0 = rgb2gray(frame0);
375
    frame1 = rgb2gray(frame1);
238 jakw 376
 
241 jakw 377
    nMarkers = size(initGuesses, 1);
238 jakw 378
 
239 jakw 379
    E = zeros(nMarkers, 3);
380
    conf = zeros(nMarkers, 1);
381
 
238 jakw 382
    for i=1:nMarkers
383
 
384
        pI = initGuesses(i,:);
385
 
386
        e0 = camStereoParams.CameraParameters1.worldToImage(eye(3,3), zeros(3,1), pI);
387
        e1 = camStereoParams.CameraParameters2.worldToImage(camStereoParams.RotationOfCamera2, camStereoParams.TranslationOfCamera2, pI);
388
 
389
        % center of support region
390
        e0Center = round(e0);
391
        e1Center = round(e1);
392
 
393
        % find initial normal
394
        idx = pc.findNearestNeighbors(pI, 1);
239 jakw 395
        nI = double(normals(idx, :));
238 jakw 396
 
239 jakw 397
        margin = 25;
238 jakw 398
 
399
        [x,y] = meshgrid(e0Center(1)-margin:e0Center(1)+margin, e0Center(2)-margin:e0Center(2)+margin);
400
        e0ImCoords = [x(:), y(:)];
401
 
402
        [x,y] = meshgrid(e1Center(1)-margin:e1Center(1)+margin, e1Center(2)-margin:e1Center(2)+margin);
403
        e1ImCoords = [x(:), y(:)];
404
 
241 jakw 405
        nCoords = length(x(:));
406
 
239 jakw 407
        e0UndistImCoords = undistortPointsFast(e0ImCoords, camStereoParams.CameraParameters1);
408
        e0NormImCoords = camStereoParams.CameraParameters1.pointsToWorld(eye(3,3), [0, 0, 1], e0UndistImCoords);
241 jakw 409
        e0Hom = [e0NormImCoords, ones(nCoords, 1)];
239 jakw 410
        e1UndistImCoords = undistortPointsFast(e1ImCoords, camStereoParams.CameraParameters2);
411
        e1NormImCoords = camStereoParams.CameraParameters2.pointsToWorld(eye(3,3), [0, 0, 1], e1UndistImCoords);
241 jakw 412
        e1Hom = [e1NormImCoords, ones(nCoords, 1)];
238 jakw 413
 
241 jakw 414
        imVals0 = double(frame0(sub2ind(size(frame0), e0ImCoords(:,2), e0ImCoords(:,1))));
415
        imVals1 = double(frame1(sub2ind(size(frame1), e1ImCoords(:,2), e1ImCoords(:,1))));
416
 
239 jakw 417
        x0 = [pI nI(1:2)/nI(3) 70.0 70.0];
238 jakw 418
 
241 jakw 419
%         r = circleResiduals(x0);
420
%         figure; 
421
%         subplot(2,2,1);
422
%         imagesc(reshape(r(1:length(e0NormImCoords)), 2*margin+1, 2*margin+1), [-50 50]);
423
%         subplot(2,2,2);
424
%         imagesc(reshape(r(length(e0NormImCoords)+1:end), 2*margin+1, 2*margin+1), [-50 50]);
425
%         drawnow;
240 jakw 426
 
241 jakw 427
        %options = optimset('Algorithm', 'levenberg-marquardt', 'Display', 'final', 'OutputFcn', @out, 'MaxIter', 30, 'TolFun', 10^(-6), 'TolX', 0);
428
        options = optimoptions('lsqnonlin', 'Display', 'final');
429
 
239 jakw 430
        [x, conf(i), ~] = lsqnonlin(@circleResiduals, x0, [], [], options);
238 jakw 431
 
241 jakw 432
%         r = circleResiduals(x);
433
%         subplot(2,2,3);
434
%         imagesc(reshape(r(1:length(e0NormImCoords)), 2*margin+1, 2*margin+1), [-50 50]);
435
%         subplot(2,2,4);
436
%         imagesc(reshape(r(length(e0NormImCoords)+1:end), 2*margin+1, 2*margin+1), [-50 50]);
437
%         drawnow;
240 jakw 438
 
239 jakw 439
        E(i,:) = x(1:3);
440
 
441
    end
442
 
443
    function stop = out(x, optimValues, state)
238 jakw 444
 
239 jakw 445
%         r = optimValues.residual;
446
%         
447
%         figure; 
448
%         subplot(1,2,1);
449
%         imagesc(reshape(r(1:length(e0NormImCoords)), 2*margin+1, 2*margin+1), [-50 50]);
450
%         subplot(1,2,2);
451
%         imagesc(reshape(r(length(e0NormImCoords)+1:end), 2*margin+1, 2*margin+1), [-50 50]);
452
%         drawnow;
453
%         
454
%         display(x);
238 jakw 455
 
239 jakw 456
        stop = false;
238 jakw 457
    end
239 jakw 458
 
238 jakw 459
    function r = circleResiduals(x)
460
 
239 jakw 461
        p0 = x(1:3);
462
        p1 = x(1:3) * camStereoParams.RotationOfCamera2 + camStereoParams.TranslationOfCamera2;
463
        n0 = [x(4:5) 1.0];
464
        n0 = 1.0/norm(n0) * n0;
465
        n1 = n0 * camStereoParams.RotationOfCamera2;
238 jakw 466
 
239 jakw 467
        r = zeros(length(e0NormImCoords) + length(e1NormImCoords), 1);
238 jakw 468
 
239 jakw 469
        % norminal radius of markers
470
        markerRadius = 1.4/2.0; %mm
471
 
472
        % half-width of ramp
241 jakw 473
        w = 0.1; %mm
474
 
475
        % camera 0
476
        t = (p0*n0')./(e0Hom*n0');
239 jakw 477
 
241 jakw 478
        dVec = repmat(p0, nCoords, 1) - t.*e0Hom;
479
        d = sqrt(sum(dVec.*dVec, 2));
239 jakw 480
 
241 jakw 481
        % "saturated" ramp function for marker disc shape
482
        weights = max(min(1.0, -1.0/(2*w)*(d-markerRadius)+0.5), 0.0);
239 jakw 483
 
241 jakw 484
        r(1:nCoords) = x(6)*weights - imVals0;
238 jakw 485
 
241 jakw 486
        % camera 1
487
        t = (p1*n1')./(e1Hom*n1');
239 jakw 488
 
241 jakw 489
        dVec = repmat(p1, nCoords, 1) - t.*e1Hom;
490
        d = sqrt(sum(dVec.*dVec, 2));
491
 
492
        % "saturated" ramp function for marker disc shape
493
        weights = max(min(1.0, -1.0/(2*w)*(d-markerRadius)+0.5), 0.0);
494
 
495
        r(nCoords+1:end) = x(7)*weights - imVals1;
238 jakw 496
 
239 jakw 497
%         figure; 
498
%         subplot(1,2,1);
499
%         imagesc(reshape(r(1:length(e0NormImCoords)), 2*margin+1, 2*margin+1), [-50 50]);
500
%         subplot(1,2,2);
501
%         imagesc(reshape(r(length(e0NormImCoords)+1:end), 2*margin+1, 2*margin+1), [-50 50]);
502
%         drawnow;
503
 
238 jakw 504
    end
505
 
506
end
507
 
212 jakw 508
function E = projectOntoPointCloud(e, P, pointCloud)
237 jakw 509
% Project 2d point coordinates onto pointCloud to find corresponding 3d
510
% point coordinates.
211 jakw 511
 
212 jakw 512
    q = [pointCloud ones(size(pointCloud,1),1)]*P;
211 jakw 513
    q = q(:,1:2)./[q(:,3) q(:,3)];
514
 
515
    E = nan(size(e,1), 3);
516
 
517
    for i=1:size(e, 1)
518
        sqDists = sum((q - repmat(e(i,:), size(q, 1), 1)).^2, 2);
519
 
216 jakw 520
        [sqDistsSorted, sortIdx] = sort(sqDists);
211 jakw 521
 
241 jakw 522
        % neighbors are points that project to within 10px
523
        neighbors = (sqDistsSorted < 10.0^2);
216 jakw 524
 
525
        distsSorted = sqrt(sqDistsSorted(neighbors));
241 jakw 526
        invDistsSorted = 1.0./distsSorted;
216 jakw 527
        sortIdx = sortIdx(neighbors);
528
 
529
        nNeighbors = sum(neighbors);
530
 
531
        if(nNeighbors >= 2)
532
            E(i, :) = 0;
533
            for j=1:nNeighbors
534
                E(i, :) = E(i, :) + invDistsSorted(j)/sum(invDistsSorted) * pointCloud(sortIdx(j), :);
535
            end
211 jakw 536
        end
537
 
538
    end    
539
end
540
 
219 jakw 541
function H = Hest_DLT(q1, q2)
542
    % Estimate the homography between a set of point correspondences using the 
543
    % direct linear transform algorithm.
544
    %
545
    % Input:
546
    %           q1: 3xN matrix of homogenous point coordinates from camera 1. 
547
    %           q2: 3xN matrix of corresponding points from camera 2.
548
    % Output:
549
    %           H: 3x3 matrix. The Fundamental Matrix estimate. 
550
    %
551
    % Note that N must be at least 4.
552
    % See derivation in Aanaes, Lecture Notes on Computer Vision, 2011
553
 
554
    % Normalize points
555
    [T1,invT1] = normalizationMat(q1);
556
    q1_tilde = T1*q1;
557
 
558
    T2 = normalizationMat(q2);
559
    q2_tilde = T2*q2;
560
 
561
    % DLT estimation
562
    N = size(q1_tilde,2);
563
    assert(size(q2_tilde,2)==N);
564
 
565
    B = zeros(3*N,9);
566
 
567
    for i=1:N
568
        q1i = q1_tilde(:,i);
569
        q2i = q2_tilde(:,i);
570
        q1_x = [0 -q1i(3) q1i(2); q1i(3) 0 -q1i(1); -q1i(2) q1i(1) 0];
571
        biT = kron(q2i', q1_x); 
572
        B(3*(i-1)+1:3*i, :) = biT;
573
    end
574
 
575
    [U,S,~] = svd(B');
576
 
577
    [~,idx] = min(diag(S));
578
    h = U(:,idx);
579
 
580
    H_tilde = reshape(h, 3, 3);
581
 
582
    % Unnormalize H
583
    H = invT1*H_tilde*T2;
584
 
585
    % Arbitrarily chose scale
586
    H = H * 1/H(3,3);
587
end
588
 
589
function [T,invT] = normalizationMat(q)
590
    % Gives a normalization matrix for homogeneous coordinates
591
    % such that T*q will have zero mean and unit variance.
592
    % See Aanaes, Computer Vision Lecture Notes 2.8.2
593
    %
594
    % q: (M+1)xN matrix of N MD points in homogenous coordinates
595
    %
596
    % Extended to also efficiently compute the inverse matrix
597
    % DTU, 2013, Jakob Wilm
598
 
599
    [M,N] = size(q);
600
    M = M-1;
601
 
602
    mu = mean(q(1:M,:),2);
603
 
604
    q_bar = q(1:M,:)-repmat(mu,1,N);
605
 
606
    s = mean(sqrt(diag(q_bar'*q_bar)))/sqrt(2);
607
 
608
    T = [eye(M)/s, -mu/s; zeros(1,M) 1];
609
 
610
    invT = [eye(M)*s, mu; zeros(1,M) 1];
611
end