Subversion Repositories seema-scanner

Rev

Rev 236 | Rev 238 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
214 jakw 1
function MSE = alignSubScansMarkers(calibrationFileName, alnFileName)
204 jakw 2
%ALIGNSUBSCANSMARKERS Determines an exact alignment of sub scans (scans
3
% from e.g. one revolution of the rotation stage). 
212 jakw 4
% The method searches for circular white markers of a specific diameter.
204 jakw 5
% White frames corresponding to each sub scan must be available.
209 jakw 6
% A coarse alignment in the form of an aln-file must be provided. 
204 jakw 7
%
8
% 2017 Jakob Wilm, DTU
9
 
209 jakw 10
initialAlign = readMeshLabALN(alnFileName);
237 jakw 11
[alnFilePath, ~, ~] = fileparts(alnFileName);
209 jakw 12
 
211 jakw 13
calibration = readOpenCVXML(calibrationFileName);
14
 
216 jakw 15
% correct for Matlab 1-indexing in principle point coordinates
16
calibration.K0(1:2, 3) = calibration.K0(1:2, 3)+1;
17
calibration.K1(1:2, 3) = calibration.K1(1:2, 3)+1;
18
 
211 jakw 19
% full projection matrices in Matlab convention
20
P0 = transpose(calibration.K0*[eye(3) zeros(3,1)]);
21
P1 = transpose(calibration.K1*[calibration.R1 calibration.T1']);
22
 
23
% matlab cam params for undistortion
24
camParams0 = cameraParameters('IntrinsicMatrix', calibration.K0', 'RadialDistortion', calibration.k0([1 2 5]), 'TangentialDistortion', calibration.k0([3 4]));
25
camParams1 = cameraParameters('IntrinsicMatrix', calibration.K1', 'RadialDistortion', calibration.k1([1 2 5]), 'TangentialDistortion', calibration.k1([3 4]));
26
 
27
% matlab struct for triangulation
28
camStereoParams = stereoParameters(camParams0, camParams1, calibration.R1', calibration.T1');
29
 
214 jakw 30
nSubScans = length(initialAlign);
209 jakw 31
 
211 jakw 32
% 3D coordinates of markers in local camera frame
33
E = cell(nSubScans, 1);
34
 
35
% 3D coordinates of markers in global initial alignment
36
Eg = cell(size(E));
37
 
38
% find 3D markers coordinates 
209 jakw 39
for i=1:nSubScans
236 jakw 40
%for i=5:5
211 jakw 41
    % load point cloud
237 jakw 42
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
43
    pcFilePath = fileparts(pcFileName);
44
    pc = pcread(pcFileName);
211 jakw 45
    Q = pc.Location;
214 jakw 46
    idString = strsplit(initialAlign(i).FileName, {'.ply', '_'});
47
    idString = idString{end-1};
209 jakw 48
 
211 jakw 49
    % load white frames
237 jakw 50
    frame0 = imread(fullfile(pcFilePath, ['sequence_' idString], 'frames0_0.png'));
51
    frame1 = imread(fullfile(pcFilePath, ['sequence_' idString], 'frames1_0.png'));
211 jakw 52
 
237 jakw 53
    e0Coords = autoDetectMarkers(frame0);
54
    e1Coords = autoDetectMarkers(frame1);
209 jakw 55
 
237 jakw 56
    %e0Coords = manuallyDetectMarkers(frame0);
57
    %e1Coords = manuallyDetectMarkers(frame1);
210 jakw 58
 
237 jakw 59
    %[e0Coords, conf0] = detectMarkersSubpix(frame0, e0Coords, P0, Q);
60
    %[e1Coords, conf1] = detectMarkersSubpix(frame1, e1Coords, P1, Q);
61
 
62
    if(length(e0Coords) < 1 || length(e1Coords) < 1)
63
        continue;
64
    end
65
 
66
%     figure; 
67
%     subplot(1,2,1);
68
%     imshow(frame0);
69
%     hold('on');
70
%     plot(e0Coords(:,1), e0Coords(:,2), 'rx', 'MarkerSize', 15);
71
%     subplot(1,2,2);
72
%     imshow(frame1);
73
%     hold('on');
74
%     plot(e1Coords(:,1), e1Coords(:,2), 'rx', 'MarkerSize', 15);
75
%     drawnow;
76
 
236 jakw 77
    e0Coords = undistortPoints(e0Coords, camParams0);
78
    e1Coords = undistortPoints(e1Coords, camParams1);
211 jakw 79
 
80
    % match ellipse candidates between cameras based on projection
81
    E0 = projectOntoPointCloud(e0Coords, P0, Q);
82
    E1 = projectOntoPointCloud(e1Coords, P1, Q);
83
 
84
    matchedPairs = nan(size(E0, 1), 2);
85
    nMatchedPairs = 0;
86
    for j=1:size(E0, 1)
87
 
88
        % should use pdist2 instead..
89
        sqDists = sum((E1 - repmat(E0(j,:), size(E1, 1), 1)).^2, 2);
90
 
91
        [minSqDist, minSqDistIdx] = min(sqDists);
92
 
216 jakw 93
        if(minSqDist < 1^2)
211 jakw 94
            nMatchedPairs = nMatchedPairs + 1;
95
            matchedPairs(nMatchedPairs, :) = [j, minSqDistIdx];
96
        end
97
    end
98
    matchedPairs = matchedPairs(1:nMatchedPairs, :);
209 jakw 99
 
237 jakw 100
    figure; 
101
    subplot(1,2,1);
102
    imshow(frame0);
103
    hold('on');
104
    plot(e0Coords(matchedPairs(:, 1),1), e0Coords(matchedPairs(:, 1),2), 'rx', 'MarkerSize', 15);
105
    subplot(1,2,2);
106
    imshow(frame1);
107
    hold('on');
108
    plot(e1Coords(matchedPairs(:, 2),1), e1Coords(matchedPairs(:, 2),2), 'rx', 'MarkerSize', 15);
109
    drawnow;
110
 
211 jakw 111
    % triangulate marker centers (lens correction has been performed)
214 jakw 112
    [E{i}, e] = triangulate(e0Coords(matchedPairs(:, 1),:), e1Coords(matchedPairs(:, 2),:), camStereoParams);
218 jakw 113
    E{i} = E{i}(e<3.0, :);
114
    display(e);
209 jakw 115
 
216 jakw 116
    % write point cloud with marker (debugging)
117
    pcDebug = pointCloud([pc.Location; E{i}], 'Color', [pc.Color; repmat([255, 0, 0], size(E{i}, 1), 1)]);
118
    pcwrite(pcDebug, 'pcDebug.ply');
119
 
120
    % bring markers into initial alignment
211 jakw 121
    [U,~,V] = svd(initialAlign(i).Rotation);
122
    Ri = U*V';
123
    Ti = initialAlign(i).Translation;
209 jakw 124
 
211 jakw 125
    Eg{i} = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
126
end
127
 
212 jakw 128
% show found markers in initial alignment
129
figure;
130
hold('on');
211 jakw 131
for i=1:nSubScans
132
    % fix Ri to be orthogonal
133
    [U,~,V] = svd(initialAlign(i).Rotation);
134
    Ri = U*V';
209 jakw 135
 
211 jakw 136
    % bring point cloud into initial alignment
237 jakw 137
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
138
    pc = pcread(pcFileName);
211 jakw 139
    tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
140
    pcg = pctransform(pc, tform);
212 jakw 141
 
211 jakw 142
    pcshow(pcg);
143
    xlabel('x');
144
    ylabel('y');
145
    zlabel('z');
212 jakw 146
 
147
    plot3(Eg{i}(:,1), Eg{i}(:,2), Eg{i}(:,3), '.', 'MarkerSize', 15);
213 jakw 148
    title('Initial Alignment');
204 jakw 149
end
150
 
212 jakw 151
% match markers between poses using initial alignment
152
Pg = {};
153
P = {};
154
for i=1:nSubScans
155
    for j=1:size(Eg{i}, 1)
156
        pg = Eg{i}(j,:);
157
        p = E{i}(j,:);
158
        matched = false;
159
        for k=1:size(Pg, 2)
160
            clusterCenter = mean(cat(1, Pg{:,k}), 1);
161
            if(sum((pg - clusterCenter).^2) < 3^2)
162
                % store in global frame
163
                Pg{i,k} = pg;
164
                % store in local frame
165
                P{i,k} = p;
166
                matched = true;
167
                break;
168
            end
169
        end
170
        % create new cluster
171
        if(not(matched))
172
            Pg{i,end+1} = pg;
173
            P{i,end+1} = p;
174
        end 
175
    end
176
end
211 jakw 177
 
212 jakw 178
% run optimization
179
alignment = groupwiseOrthogonalProcrustes(P, initialAlign);
180
 
213 jakw 181
% show found markers in optimized alignment
182
figure;
183
hold('on');
184
for i=1:nSubScans
218 jakw 185
    % fix Ri to be orthogonal
186
    [U,~,V] = svd(alignment(i).Rotation);
187
    Ri = U*V';
213 jakw 188
    Ti = alignment(i).Translation;
189
 
190
    Ea = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
191
 
192
    % bring point cloud into optimized alignment
215 jakw 193
    pc = pcread(initialAlign(i).FileName);
213 jakw 194
    tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
195
    pcg = pctransform(pc, tform);
196
 
197
    pcshow(pcg);
198
    xlabel('x');
199
    ylabel('y');
200
    zlabel('z');
201
 
202
    plot3(Ea(:,1), Ea(:,2), Ea(:,3), '.', 'MarkerSize', 15);
203
    title('Optimized Alignment');
204
end
205
 
206
% write to ALN file
212 jakw 207
for i=1:length(alignment)
208
    alignment(i).FileName = initialAlign(i).FileName;
209 jakw 209
end
210
 
214 jakw 211
writeMeshLabALN(alignment, strrep(alnFileName, '.aln', 'Optimized.aln'));
211 jakw 212
 
212 jakw 213
end
214
 
213 jakw 215
function e = autoDetectMarkers(frame, P, pointCloud)
212 jakw 216
 
211 jakw 217
    % create mask based on morphology
236 jakw 218
    g = rgb2gray(frame);
237 jakw 219
    % g(g>254) = 0;
220
    % bw = imbinarize(g, 'adaptive', 'Sensitivity', 10^(-50));
221
    bw = imbinarize(g, 0.10);
211 jakw 222
    cc = bwconncomp(bw);
223
    rp = regionprops(cc, 'Area', 'Solidity', 'Eccentricity', 'Centroid');
213 jakw 224
    idx = ([rp.Area] > 100 & [rp.Area] < 1000 & [rp.Solidity] > 0.9);
211 jakw 225
 
237 jakw 226
    e = cat(1, rp(idx).Centroid);
213 jakw 227
 
211 jakw 228
end
229
 
213 jakw 230
function e = manuallyDetectMarkers(frame, P, pointCloud)
211 jakw 231
 
212 jakw 232
    e = [];
213 jakw 233
	%edges = edge(rgb2gray(frame), 'Canny', [0.08 0.1], 2);
212 jakw 234
 
211 jakw 235
    figure; 
212 jakw 236
    hold('on');
211 jakw 237
    imshow(frame);
212 jakw 238
    title('Close figure to end.');
239
    set(gcf, 'pointer', 'crosshair'); 
240
    set(gcf, 'WindowButtonDownFcn', @clickCallback);
241
 
242
    uiwait;
211 jakw 243
 
213 jakw 244
    function clickCallback(caller, ~)
212 jakw 245
 
246
        p = get(gca, 'CurrentPoint'); 
247
        p = p(1, 1:2);
211 jakw 248
 
237 jakw 249
        e = [e; p(:, 1:2)];
213 jakw 250
 
251
        if(not(isempty(el)))
252
            figure(caller);
253
            hold('on');
254
            plot(el(1), el(2), 'rx', 'MarkerSize', 15);
255
        end
212 jakw 256
    end
257
 
258
end
211 jakw 259
 
212 jakw 260
function [e, conf] = detectMarkersSubpix(frame, initGuesses, P, Q)
237 jakw 261
% Detect a marker in a single frame by rectifying to the image and
262
% performing image registration.
211 jakw 263
 
212 jakw 264
    % create mask based on morphology
236 jakw 265
    g = rgb2gray(frame);
266
    g(g>254) = 0;
267
    bw = imbinarize(g);
212 jakw 268
    cc = bwconncomp(bw);
269
    labels = labelmatrix(cc);
211 jakw 270
 
212 jakw 271
    % project point cloud into image
272
    q = [Q ones(size(Q,1),1)]*P;
273
    q = q./[q(:,3) q(:,3) q(:,3)];
274
 
213 jakw 275
    e = zeros(size(initGuesses));
276
    conf = zeros(size(initGuesses, 1), 1);
277
 
278
    nMarkersFound = 0;
279
 
212 jakw 280
    for i=1:size(initGuesses, 1)
281
 
282
        labelId = labels(round(initGuesses(i,2)), round(initGuesses(i,1)));
283
        labelMask = (labels == labelId);
284
        labelMask = imdilate(labelMask, strel('disk', 3, 0));
285
 
213 jakw 286
        if(sum(sum(labelMask)) < 10 || sum(sum(labelMask)) > 1000)
287
            continue;
288
        end
289
 
212 jakw 290
        % determine 3D points that are part of the marker
213 jakw 291
        % note: we should probably undistort labelMask
212 jakw 292
        pointMask = false(size(q, 1), 1);
293
        for j=1:size(q,1)
215 jakw 294
            if(round(q(j,2)) > size(labelMask, 1) || round(q(j,1)) > size(labelMask, 2) || round(q(j,2)) < 1 || round(q(j,1)) < 1)
295
                continue;
296
            end
297
 
212 jakw 298
            if(labelMask(round(q(j,2)), round(q(j,1))))
299
                pointMask(j) = true;
300
            end
301
        end
302
 
215 jakw 303
        if(sum(pointMask)) < 10
213 jakw 304
            continue;
305
        end
212 jakw 306
 
213 jakw 307
        % project 3D points onto local plane
308
        [~, sc, ~] = pca(Q(pointMask, :));
309
        Qlocal = sc(:, 1:2);
310
 
311
        % synthetic marker in high res. space
312
        m = zeros(151, 151);
313
        [x, y] = meshgrid(1:151, 1:151);
314
        m((x(:)-76).^2 + (y(:)-76).^2 <= 50^2) = 1.0;
315
 
316
        % relation between marker space (px) and true marker/local plane(mm)
317
        % true marker diameter is 1.75mm
236 jakw 318
        mScale = 101/1.4; %px/mm
213 jakw 319
        mShift = 76; %px
320
 
321
        % build homography from image to marker space
236 jakw 322
        H = fitgeotrans(q(pointMask, 1:2), mScale*Qlocal+mShift,  'projective');
323
        %Hdlt = Hest_DLT([mScale*Qlocal+mShift, ones(size(Qlocal, 1), 1)]', q(pointMask,:)');
324
        %H = projective2d(Hdlt');
213 jakw 325
 
326
        % bring image of marker into marker space
327
        imMarkerSpace = imwarp(frame, H, 'OutputView', imref2d(size(m)));
328
        imMarkerSpace = rgb2gray(im2double(imMarkerSpace));
329
 
330
        %figure; imshowpair(imMarkerSpace, m);
331
 
332
        % perform image registration
214 jakw 333
        % might be better off using subpixel image correlation
334
        [opt, met] = imregconfig('multimodal');
218 jakw 335
        T = imregtform(m, imMarkerSpace, 'translation', opt, met, 'DisplayOptimization', false);
213 jakw 336
 
337
        rege = imwarp(m, T, 'OutputView', imref2d(size(m)));
338
        %figure; imshowpair(imMarkerSpace, rege);
339
 
340
        % measure of correlation
341
        confI = sum(sum(imMarkerSpace .* rege))/sqrt(sum(sum(imMarkerSpace) * sum(sum(rege))));
236 jakw 342
        %confI = 1.0;
213 jakw 343
 
344
        if confI<0.4
345
            continue;
346
        end
347
 
348
        fprintf('Found marker with confidence: %f\n', confI);
349
 
350
        % transform marker space coordinates (76,76) to frame space
351
        el = T.transformPointsForward([76, 76]);
352
        el = H.transformPointsInverse(el);
353
 
354
        nMarkersFound = nMarkersFound+1;
355
        e(nMarkersFound,:) = el;
356
        conf(nMarkersFound) = confI;
211 jakw 357
    end
358
 
213 jakw 359
    e = e(1:nMarkersFound, :);
360
    conf = conf(1:nMarkersFound);
211 jakw 361
end
362
 
212 jakw 363
function E = projectOntoPointCloud(e, P, pointCloud)
237 jakw 364
% Project 2d point coordinates onto pointCloud to find corresponding 3d
365
% point coordinates.
211 jakw 366
 
212 jakw 367
    q = [pointCloud ones(size(pointCloud,1),1)]*P;
211 jakw 368
    q = q(:,1:2)./[q(:,3) q(:,3)];
369
 
370
    E = nan(size(e,1), 3);
371
 
372
    for i=1:size(e, 1)
373
        sqDists = sum((q - repmat(e(i,:), size(q, 1), 1)).^2, 2);
374
 
216 jakw 375
        [sqDistsSorted, sortIdx] = sort(sqDists);
211 jakw 376
 
216 jakw 377
        neighbors = (sqDistsSorted < 4.0^2);
378
 
379
        distsSorted = sqrt(sqDistsSorted(neighbors));
380
        invDistsSorted = 1.0/distsSorted;
381
        sortIdx = sortIdx(neighbors);
382
 
383
        nNeighbors = sum(neighbors);
384
 
385
        if(nNeighbors >= 2)
386
            E(i, :) = 0;
387
            for j=1:nNeighbors
388
                E(i, :) = E(i, :) + invDistsSorted(j)/sum(invDistsSorted) * pointCloud(sortIdx(j), :);
389
            end
211 jakw 390
        end
391
 
392
    end    
393
end
394
 
219 jakw 395
function H = Hest_DLT(q1, q2)
396
    % Estimate the homography between a set of point correspondences using the 
397
    % direct linear transform algorithm.
398
    %
399
    % Input:
400
    %           q1: 3xN matrix of homogenous point coordinates from camera 1. 
401
    %           q2: 3xN matrix of corresponding points from camera 2.
402
    % Output:
403
    %           H: 3x3 matrix. The Fundamental Matrix estimate. 
404
    %
405
    % Note that N must be at least 4.
406
    % See derivation in Aanaes, Lecture Notes on Computer Vision, 2011
407
 
408
    % Normalize points
409
    [T1,invT1] = normalizationMat(q1);
410
    q1_tilde = T1*q1;
411
 
412
    T2 = normalizationMat(q2);
413
    q2_tilde = T2*q2;
414
 
415
    % DLT estimation
416
    N = size(q1_tilde,2);
417
    assert(size(q2_tilde,2)==N);
418
 
419
    B = zeros(3*N,9);
420
 
421
    for i=1:N
422
        q1i = q1_tilde(:,i);
423
        q2i = q2_tilde(:,i);
424
        q1_x = [0 -q1i(3) q1i(2); q1i(3) 0 -q1i(1); -q1i(2) q1i(1) 0];
425
        biT = kron(q2i', q1_x); 
426
        B(3*(i-1)+1:3*i, :) = biT;
427
    end
428
 
429
    [U,S,~] = svd(B');
430
 
431
    [~,idx] = min(diag(S));
432
    h = U(:,idx);
433
 
434
    H_tilde = reshape(h, 3, 3);
435
 
436
    % Unnormalize H
437
    H = invT1*H_tilde*T2;
438
 
439
    % Arbitrarily chose scale
440
    H = H * 1/H(3,3);
441
end
442
 
443
function [T,invT] = normalizationMat(q)
444
    % Gives a normalization matrix for homogeneous coordinates
445
    % such that T*q will have zero mean and unit variance.
446
    % See Aanaes, Computer Vision Lecture Notes 2.8.2
447
    %
448
    % q: (M+1)xN matrix of N MD points in homogenous coordinates
449
    %
450
    % Extended to also efficiently compute the inverse matrix
451
    % DTU, 2013, Jakob Wilm
452
 
453
    [M,N] = size(q);
454
    M = M-1;
455
 
456
    mu = mean(q(1:M,:),2);
457
 
458
    q_bar = q(1:M,:)-repmat(mu,1,N);
459
 
460
    s = mean(sqrt(diag(q_bar'*q_bar)))/sqrt(2);
461
 
462
    T = [eye(M)/s, -mu/s; zeros(1,M) 1];
463
 
464
    invT = [eye(M)*s, mu; zeros(1,M) 1];
465
end