Subversion Repositories seema-scanner

Rev

Rev 237 | Rev 239 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
214 jakw 1
function MSE = alignSubScansMarkers(calibrationFileName, alnFileName)
204 jakw 2
%ALIGNSUBSCANSMARKERS Determines an exact alignment of sub scans (scans
3
% from e.g. one revolution of the rotation stage). 
212 jakw 4
% The method searches for circular white markers of a specific diameter.
204 jakw 5
% White frames corresponding to each sub scan must be available.
209 jakw 6
% A coarse alignment in the form of an aln-file must be provided. 
204 jakw 7
%
8
% 2017 Jakob Wilm, DTU
9
 
209 jakw 10
initialAlign = readMeshLabALN(alnFileName);
237 jakw 11
[alnFilePath, ~, ~] = fileparts(alnFileName);
209 jakw 12
 
211 jakw 13
calibration = readOpenCVXML(calibrationFileName);
14
 
216 jakw 15
% correct for Matlab 1-indexing in principle point coordinates
16
calibration.K0(1:2, 3) = calibration.K0(1:2, 3)+1;
17
calibration.K1(1:2, 3) = calibration.K1(1:2, 3)+1;
18
 
211 jakw 19
% full projection matrices in Matlab convention
20
P0 = transpose(calibration.K0*[eye(3) zeros(3,1)]);
21
P1 = transpose(calibration.K1*[calibration.R1 calibration.T1']);
22
 
23
% matlab cam params for undistortion
24
camParams0 = cameraParameters('IntrinsicMatrix', calibration.K0', 'RadialDistortion', calibration.k0([1 2 5]), 'TangentialDistortion', calibration.k0([3 4]));
25
camParams1 = cameraParameters('IntrinsicMatrix', calibration.K1', 'RadialDistortion', calibration.k1([1 2 5]), 'TangentialDistortion', calibration.k1([3 4]));
26
 
27
% matlab struct for triangulation
28
camStereoParams = stereoParameters(camParams0, camParams1, calibration.R1', calibration.T1');
29
 
214 jakw 30
nSubScans = length(initialAlign);
209 jakw 31
 
211 jakw 32
% 3D coordinates of markers in local camera frame
33
E = cell(nSubScans, 1);
34
 
35
% 3D coordinates of markers in global initial alignment
36
Eg = cell(size(E));
37
 
38
% find 3D markers coordinates 
209 jakw 39
for i=1:nSubScans
236 jakw 40
%for i=5:5
211 jakw 41
    % load point cloud
237 jakw 42
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
43
    pcFilePath = fileparts(pcFileName);
44
    pc = pcread(pcFileName);
211 jakw 45
    Q = pc.Location;
214 jakw 46
    idString = strsplit(initialAlign(i).FileName, {'.ply', '_'});
47
    idString = idString{end-1};
209 jakw 48
 
211 jakw 49
    % load white frames
237 jakw 50
    frame0 = imread(fullfile(pcFilePath, ['sequence_' idString], 'frames0_0.png'));
51
    frame1 = imread(fullfile(pcFilePath, ['sequence_' idString], 'frames1_0.png'));
211 jakw 52
 
237 jakw 53
    e0Coords = autoDetectMarkers(frame0);
54
    e1Coords = autoDetectMarkers(frame1);
209 jakw 55
 
237 jakw 56
    %e0Coords = manuallyDetectMarkers(frame0);
57
    %e1Coords = manuallyDetectMarkers(frame1);
210 jakw 58
 
237 jakw 59
    %[e0Coords, conf0] = detectMarkersSubpix(frame0, e0Coords, P0, Q);
60
    %[e1Coords, conf1] = detectMarkersSubpix(frame1, e1Coords, P1, Q);
61
 
62
    if(length(e0Coords) < 1 || length(e1Coords) < 1)
63
        continue;
64
    end
65
 
66
%     figure; 
67
%     subplot(1,2,1);
68
%     imshow(frame0);
69
%     hold('on');
70
%     plot(e0Coords(:,1), e0Coords(:,2), 'rx', 'MarkerSize', 15);
71
%     subplot(1,2,2);
72
%     imshow(frame1);
73
%     hold('on');
74
%     plot(e1Coords(:,1), e1Coords(:,2), 'rx', 'MarkerSize', 15);
75
%     drawnow;
76
 
236 jakw 77
    e0Coords = undistortPoints(e0Coords, camParams0);
78
    e1Coords = undistortPoints(e1Coords, camParams1);
211 jakw 79
 
80
    % match ellipse candidates between cameras based on projection
81
    E0 = projectOntoPointCloud(e0Coords, P0, Q);
82
    E1 = projectOntoPointCloud(e1Coords, P1, Q);
83
 
84
    matchedPairs = nan(size(E0, 1), 2);
85
    nMatchedPairs = 0;
86
    for j=1:size(E0, 1)
87
 
88
        % should use pdist2 instead..
89
        sqDists = sum((E1 - repmat(E0(j,:), size(E1, 1), 1)).^2, 2);
90
 
91
        [minSqDist, minSqDistIdx] = min(sqDists);
92
 
216 jakw 93
        if(minSqDist < 1^2)
211 jakw 94
            nMatchedPairs = nMatchedPairs + 1;
95
            matchedPairs(nMatchedPairs, :) = [j, minSqDistIdx];
96
        end
97
    end
98
    matchedPairs = matchedPairs(1:nMatchedPairs, :);
209 jakw 99
 
237 jakw 100
    figure; 
101
    subplot(1,2,1);
102
    imshow(frame0);
103
    hold('on');
104
    plot(e0Coords(matchedPairs(:, 1),1), e0Coords(matchedPairs(:, 1),2), 'rx', 'MarkerSize', 15);
105
    subplot(1,2,2);
106
    imshow(frame1);
107
    hold('on');
108
    plot(e1Coords(matchedPairs(:, 2),1), e1Coords(matchedPairs(:, 2),2), 'rx', 'MarkerSize', 15);
109
    drawnow;
110
 
238 jakw 111
%     % triangulate marker centers (lens correction has been performed)
112
%     [E{i}, e] = triangulate(e0Coords(matchedPairs(:, 1),:), e1Coords(matchedPairs(:, 2),:), camStereoParams);
113
%     E{i} = E{i}(e<3.0, :);
114
%     display(e);
115
 
116
    [E{i}, e] = detectMarkersStereoSubpix(frame0, frame1, E0(matchedPairs(:, 1), :), camStereoParams, pc);
218 jakw 117
    display(e);
209 jakw 118
 
216 jakw 119
    % write point cloud with marker (debugging)
120
    pcDebug = pointCloud([pc.Location; E{i}], 'Color', [pc.Color; repmat([255, 0, 0], size(E{i}, 1), 1)]);
121
    pcwrite(pcDebug, 'pcDebug.ply');
122
 
123
    % bring markers into initial alignment
211 jakw 124
    [U,~,V] = svd(initialAlign(i).Rotation);
125
    Ri = U*V';
126
    Ti = initialAlign(i).Translation;
209 jakw 127
 
211 jakw 128
    Eg{i} = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
129
end
130
 
212 jakw 131
% show found markers in initial alignment
132
figure;
133
hold('on');
211 jakw 134
for i=1:nSubScans
135
    % fix Ri to be orthogonal
136
    [U,~,V] = svd(initialAlign(i).Rotation);
137
    Ri = U*V';
209 jakw 138
 
211 jakw 139
    % bring point cloud into initial alignment
237 jakw 140
    pcFileName = fullfile(alnFilePath, initialAlign(i).FileName);
141
    pc = pcread(pcFileName);
211 jakw 142
    tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
143
    pcg = pctransform(pc, tform);
212 jakw 144
 
211 jakw 145
    pcshow(pcg);
146
    xlabel('x');
147
    ylabel('y');
148
    zlabel('z');
212 jakw 149
 
150
    plot3(Eg{i}(:,1), Eg{i}(:,2), Eg{i}(:,3), '.', 'MarkerSize', 15);
213 jakw 151
    title('Initial Alignment');
204 jakw 152
end
153
 
212 jakw 154
% match markers between poses using initial alignment
155
Pg = {};
156
P = {};
157
for i=1:nSubScans
158
    for j=1:size(Eg{i}, 1)
159
        pg = Eg{i}(j,:);
160
        p = E{i}(j,:);
161
        matched = false;
162
        for k=1:size(Pg, 2)
163
            clusterCenter = mean(cat(1, Pg{:,k}), 1);
164
            if(sum((pg - clusterCenter).^2) < 3^2)
165
                % store in global frame
166
                Pg{i,k} = pg;
167
                % store in local frame
168
                P{i,k} = p;
169
                matched = true;
170
                break;
171
            end
172
        end
173
        % create new cluster
174
        if(not(matched))
175
            Pg{i,end+1} = pg;
176
            P{i,end+1} = p;
177
        end 
178
    end
179
end
211 jakw 180
 
212 jakw 181
% run optimization
182
alignment = groupwiseOrthogonalProcrustes(P, initialAlign);
183
 
213 jakw 184
% show found markers in optimized alignment
185
figure;
186
hold('on');
187
for i=1:nSubScans
218 jakw 188
    % fix Ri to be orthogonal
189
    [U,~,V] = svd(alignment(i).Rotation);
190
    Ri = U*V';
213 jakw 191
    Ti = alignment(i).Translation;
192
 
193
    Ea = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
194
 
195
    % bring point cloud into optimized alignment
215 jakw 196
    pc = pcread(initialAlign(i).FileName);
213 jakw 197
    tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
198
    pcg = pctransform(pc, tform);
199
 
200
    pcshow(pcg);
201
    xlabel('x');
202
    ylabel('y');
203
    zlabel('z');
204
 
205
    plot3(Ea(:,1), Ea(:,2), Ea(:,3), '.', 'MarkerSize', 15);
206
    title('Optimized Alignment');
207
end
208
 
209
% write to ALN file
212 jakw 210
for i=1:length(alignment)
211
    alignment(i).FileName = initialAlign(i).FileName;
209 jakw 212
end
213
 
214 jakw 214
writeMeshLabALN(alignment, strrep(alnFileName, '.aln', 'Optimized.aln'));
211 jakw 215
 
212 jakw 216
end
217
 
213 jakw 218
function e = autoDetectMarkers(frame, P, pointCloud)
212 jakw 219
 
211 jakw 220
    % create mask based on morphology
236 jakw 221
    g = rgb2gray(frame);
237 jakw 222
    % g(g>254) = 0;
223
    % bw = imbinarize(g, 'adaptive', 'Sensitivity', 10^(-50));
224
    bw = imbinarize(g, 0.10);
211 jakw 225
    cc = bwconncomp(bw);
226
    rp = regionprops(cc, 'Area', 'Solidity', 'Eccentricity', 'Centroid');
213 jakw 227
    idx = ([rp.Area] > 100 & [rp.Area] < 1000 & [rp.Solidity] > 0.9);
211 jakw 228
 
237 jakw 229
    e = cat(1, rp(idx).Centroid);
213 jakw 230
 
211 jakw 231
end
232
 
213 jakw 233
function e = manuallyDetectMarkers(frame, P, pointCloud)
211 jakw 234
 
212 jakw 235
    e = [];
213 jakw 236
	%edges = edge(rgb2gray(frame), 'Canny', [0.08 0.1], 2);
212 jakw 237
 
211 jakw 238
    figure; 
212 jakw 239
    hold('on');
211 jakw 240
    imshow(frame);
212 jakw 241
    title('Close figure to end.');
242
    set(gcf, 'pointer', 'crosshair'); 
243
    set(gcf, 'WindowButtonDownFcn', @clickCallback);
244
 
245
    uiwait;
211 jakw 246
 
213 jakw 247
    function clickCallback(caller, ~)
212 jakw 248
 
249
        p = get(gca, 'CurrentPoint'); 
250
        p = p(1, 1:2);
211 jakw 251
 
237 jakw 252
        e = [e; p(:, 1:2)];
213 jakw 253
 
254
        if(not(isempty(el)))
255
            figure(caller);
256
            hold('on');
257
            plot(el(1), el(2), 'rx', 'MarkerSize', 15);
258
        end
212 jakw 259
    end
260
 
261
end
211 jakw 262
 
212 jakw 263
function [e, conf] = detectMarkersSubpix(frame, initGuesses, P, Q)
237 jakw 264
% Detect a marker in a single frame by rectifying to the image and
265
% performing image registration.
211 jakw 266
 
212 jakw 267
    % create mask based on morphology
236 jakw 268
    g = rgb2gray(frame);
269
    g(g>254) = 0;
270
    bw = imbinarize(g);
212 jakw 271
    cc = bwconncomp(bw);
272
    labels = labelmatrix(cc);
211 jakw 273
 
212 jakw 274
    % project point cloud into image
275
    q = [Q ones(size(Q,1),1)]*P;
276
    q = q./[q(:,3) q(:,3) q(:,3)];
277
 
213 jakw 278
    e = zeros(size(initGuesses));
279
    conf = zeros(size(initGuesses, 1), 1);
280
 
281
    nMarkersFound = 0;
282
 
212 jakw 283
    for i=1:size(initGuesses, 1)
284
 
285
        labelId = labels(round(initGuesses(i,2)), round(initGuesses(i,1)));
286
        labelMask = (labels == labelId);
287
        labelMask = imdilate(labelMask, strel('disk', 3, 0));
288
 
213 jakw 289
        if(sum(sum(labelMask)) < 10 || sum(sum(labelMask)) > 1000)
290
            continue;
291
        end
292
 
212 jakw 293
        % determine 3D points that are part of the marker
213 jakw 294
        % note: we should probably undistort labelMask
212 jakw 295
        pointMask = false(size(q, 1), 1);
296
        for j=1:size(q,1)
215 jakw 297
            if(round(q(j,2)) > size(labelMask, 1) || round(q(j,1)) > size(labelMask, 2) || round(q(j,2)) < 1 || round(q(j,1)) < 1)
298
                continue;
299
            end
300
 
212 jakw 301
            if(labelMask(round(q(j,2)), round(q(j,1))))
302
                pointMask(j) = true;
303
            end
304
        end
305
 
215 jakw 306
        if(sum(pointMask)) < 10
213 jakw 307
            continue;
308
        end
212 jakw 309
 
213 jakw 310
        % project 3D points onto local plane
311
        [~, sc, ~] = pca(Q(pointMask, :));
312
        Qlocal = sc(:, 1:2);
313
 
314
        % synthetic marker in high res. space
315
        m = zeros(151, 151);
316
        [x, y] = meshgrid(1:151, 1:151);
317
        m((x(:)-76).^2 + (y(:)-76).^2 <= 50^2) = 1.0;
318
 
319
        % relation between marker space (px) and true marker/local plane(mm)
320
        % true marker diameter is 1.75mm
236 jakw 321
        mScale = 101/1.4; %px/mm
213 jakw 322
        mShift = 76; %px
323
 
324
        % build homography from image to marker space
236 jakw 325
        H = fitgeotrans(q(pointMask, 1:2), mScale*Qlocal+mShift,  'projective');
326
        %Hdlt = Hest_DLT([mScale*Qlocal+mShift, ones(size(Qlocal, 1), 1)]', q(pointMask,:)');
327
        %H = projective2d(Hdlt');
213 jakw 328
 
329
        % bring image of marker into marker space
330
        imMarkerSpace = imwarp(frame, H, 'OutputView', imref2d(size(m)));
331
        imMarkerSpace = rgb2gray(im2double(imMarkerSpace));
332
 
333
        %figure; imshowpair(imMarkerSpace, m);
334
 
335
        % perform image registration
214 jakw 336
        % might be better off using subpixel image correlation
337
        [opt, met] = imregconfig('multimodal');
218 jakw 338
        T = imregtform(m, imMarkerSpace, 'translation', opt, met, 'DisplayOptimization', false);
213 jakw 339
 
340
        rege = imwarp(m, T, 'OutputView', imref2d(size(m)));
341
        %figure; imshowpair(imMarkerSpace, rege);
342
 
343
        % measure of correlation
344
        confI = sum(sum(imMarkerSpace .* rege))/sqrt(sum(sum(imMarkerSpace) * sum(sum(rege))));
236 jakw 345
        %confI = 1.0;
213 jakw 346
 
347
        if confI<0.4
348
            continue;
349
        end
350
 
351
        fprintf('Found marker with confidence: %f\n', confI);
352
 
353
        % transform marker space coordinates (76,76) to frame space
354
        el = T.transformPointsForward([76, 76]);
355
        el = H.transformPointsInverse(el);
356
 
357
        nMarkersFound = nMarkersFound+1;
358
        e(nMarkersFound,:) = el;
359
        conf(nMarkersFound) = confI;
211 jakw 360
    end
361
 
213 jakw 362
    e = e(1:nMarkersFound, :);
363
    conf = conf(1:nMarkersFound);
211 jakw 364
end
365
 
238 jakw 366
function [E, conf] = detectMarkersStereoSubpix(frame0, frame1, initGuesses, camStereoParams, pc)
367
% Detect a marker in stereo frame set by minimizing the difference to
368
% projected images of 3d marker
369
 
370
    normals = pcnormals(pc, 6);
371
 
372
    nMarkers = size(initGuesses, 2);
373
 
374
    for i=1:nMarkers
375
 
376
        pI = initGuesses(i,:);
377
 
378
        e0 = camStereoParams.CameraParameters1.worldToImage(eye(3,3), zeros(3,1), pI);
379
        e1 = camStereoParams.CameraParameters2.worldToImage(camStereoParams.RotationOfCamera2, camStereoParams.TranslationOfCamera2, pI);
380
 
381
        % center of support region
382
        e0Center = round(e0);
383
        e1Center = round(e1);
384
 
385
        % find initial normal
386
        idx = pc.findNearestNeighbors(pI, 1);
387
        nI = normals(idx, :);
388
 
389
        margin = 10;
390
 
391
        [x,y] = meshgrid(e0Center(1)-margin:e0Center(1)+margin, e0Center(2)-margin:e0Center(2)+margin);
392
        e0ImCoords = [x(:), y(:)];
393
 
394
        [x,y] = meshgrid(e1Center(1)-margin:e1Center(1)+margin, e1Center(2)-margin:e1Center(2)+margin);
395
        e1ImCoords = [x(:), y(:)];
396
 
397
        e0UndistImCoords = undistortPoints(e0ImCoords, camStereoParams.CameraParameters1);
398
        e0NormImCoords = camStereoParams.CameraParameters1.pointsToWorld(eye(3,3), zeros(3,1), e0UndistImCoords);
399
        e1UndistImCoords = undistortPoints(e1ImCoords, camStereoParams.CameraParameters2);
400
        e1NormImCoords = camStereoParams.CameraParameters2.pointsToWorld(camStereoParams.RotationOfCamera2, camStereoParams.TranslationOfCamera2, e1UndistImCoords);
401
 
402
        x0 = [pI; nI(1:2)];
403
 
404
 
405
 
406
 
407
    end
408
 
409
    function r = circleResiduals(x)
410
 
411
        point = x(1:3);
412
        normal = [x(4:5); sqrt(1-x(4)^2-x(5)^2)];
413
 
414
        r = zeros(length(length(e0NormImCoords)) + length(e1NormImCoords), 1);
415
 
416
        for i=1:length(e0NormImCoords)
417
 
418
            % dermine z coordinate on the hypothesized plane
419
            z = 
420
 
421
        end
422
 
423
 
424
    end
425
 
426
end
427
 
212 jakw 428
function E = projectOntoPointCloud(e, P, pointCloud)
237 jakw 429
% Project 2d point coordinates onto pointCloud to find corresponding 3d
430
% point coordinates.
211 jakw 431
 
212 jakw 432
    q = [pointCloud ones(size(pointCloud,1),1)]*P;
211 jakw 433
    q = q(:,1:2)./[q(:,3) q(:,3)];
434
 
435
    E = nan(size(e,1), 3);
436
 
437
    for i=1:size(e, 1)
438
        sqDists = sum((q - repmat(e(i,:), size(q, 1), 1)).^2, 2);
439
 
216 jakw 440
        [sqDistsSorted, sortIdx] = sort(sqDists);
211 jakw 441
 
216 jakw 442
        neighbors = (sqDistsSorted < 4.0^2);
443
 
444
        distsSorted = sqrt(sqDistsSorted(neighbors));
445
        invDistsSorted = 1.0/distsSorted;
446
        sortIdx = sortIdx(neighbors);
447
 
448
        nNeighbors = sum(neighbors);
449
 
450
        if(nNeighbors >= 2)
451
            E(i, :) = 0;
452
            for j=1:nNeighbors
453
                E(i, :) = E(i, :) + invDistsSorted(j)/sum(invDistsSorted) * pointCloud(sortIdx(j), :);
454
            end
211 jakw 455
        end
456
 
457
    end    
458
end
459
 
219 jakw 460
function H = Hest_DLT(q1, q2)
461
    % Estimate the homography between a set of point correspondences using the 
462
    % direct linear transform algorithm.
463
    %
464
    % Input:
465
    %           q1: 3xN matrix of homogenous point coordinates from camera 1. 
466
    %           q2: 3xN matrix of corresponding points from camera 2.
467
    % Output:
468
    %           H: 3x3 matrix. The Fundamental Matrix estimate. 
469
    %
470
    % Note that N must be at least 4.
471
    % See derivation in Aanaes, Lecture Notes on Computer Vision, 2011
472
 
473
    % Normalize points
474
    [T1,invT1] = normalizationMat(q1);
475
    q1_tilde = T1*q1;
476
 
477
    T2 = normalizationMat(q2);
478
    q2_tilde = T2*q2;
479
 
480
    % DLT estimation
481
    N = size(q1_tilde,2);
482
    assert(size(q2_tilde,2)==N);
483
 
484
    B = zeros(3*N,9);
485
 
486
    for i=1:N
487
        q1i = q1_tilde(:,i);
488
        q2i = q2_tilde(:,i);
489
        q1_x = [0 -q1i(3) q1i(2); q1i(3) 0 -q1i(1); -q1i(2) q1i(1) 0];
490
        biT = kron(q2i', q1_x); 
491
        B(3*(i-1)+1:3*i, :) = biT;
492
    end
493
 
494
    [U,S,~] = svd(B');
495
 
496
    [~,idx] = min(diag(S));
497
    h = U(:,idx);
498
 
499
    H_tilde = reshape(h, 3, 3);
500
 
501
    % Unnormalize H
502
    H = invT1*H_tilde*T2;
503
 
504
    % Arbitrarily chose scale
505
    H = H * 1/H(3,3);
506
end
507
 
508
function [T,invT] = normalizationMat(q)
509
    % Gives a normalization matrix for homogeneous coordinates
510
    % such that T*q will have zero mean and unit variance.
511
    % See Aanaes, Computer Vision Lecture Notes 2.8.2
512
    %
513
    % q: (M+1)xN matrix of N MD points in homogenous coordinates
514
    %
515
    % Extended to also efficiently compute the inverse matrix
516
    % DTU, 2013, Jakob Wilm
517
 
518
    [M,N] = size(q);
519
    M = M-1;
520
 
521
    mu = mean(q(1:M,:),2);
522
 
523
    q_bar = q(1:M,:)-repmat(mu,1,N);
524
 
525
    s = mean(sqrt(diag(q_bar'*q_bar)))/sqrt(2);
526
 
527
    T = [eye(M)/s, -mu/s; zeros(1,M) 1];
528
 
529
    invT = [eye(M)*s, mu; zeros(1,M) 1];
530
end