Rev 211 | Rev 213 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
function MSE = alignSubScansMarkers(calibrationFileName, scanDir, alnFileName)
%ALIGNSUBSCANSMARKERS Determines an exact alignment of sub scans (scans
% from e.g. one revolution of the rotation stage).
% The method searches for circular white markers of a specific diameter.
% White frames corresponding to each sub scan must be available.
% A coarse alignment in the form of an aln-file must be provided.
%
% 2017 Jakob Wilm, DTU
initialAlign = readMeshLabALN(alnFileName);
whiteFrameDirs = dir(fullfile(scanDir, 'sequence_*'));
assert(length(whiteFrameDirs) == length(initialAlign));
calibration = readOpenCVXML(calibrationFileName);
% full projection matrices in Matlab convention
P0 = transpose(calibration.K0*[eye(3) zeros(3,1)]);
P1 = transpose(calibration.K1*[calibration.R1 calibration.T1']);
% matlab cam params for undistortion
camParams0 = cameraParameters('IntrinsicMatrix', calibration.K0', 'RadialDistortion', calibration.k0([1 2 5]), 'TangentialDistortion', calibration.k0([3 4]));
camParams1 = cameraParameters('IntrinsicMatrix', calibration.K1', 'RadialDistortion', calibration.k1([1 2 5]), 'TangentialDistortion', calibration.k1([3 4]));
% matlab struct for triangulation
camStereoParams = stereoParameters(camParams0, camParams1, calibration.R1', calibration.T1');
nSubScans = length(whiteFrameDirs);
% ellipse detection settings
ep = struct('minMajorAxis', 25, 'maxMajorAxis', 30, 'minAspectRatio', 0.4, 'randomize', 0, 'smoothStddev', 2);
% 3D coordinates of markers in local camera frame
E = cell(nSubScans, 1);
% 3D coordinates of markers in global initial alignment
Eg = cell(size(E));
% find 3D markers coordinates
for i=1:nSubScans
% load point cloud
pc = pcread(fullfile(scanDir, initialAlign(i).FileName));
Q = pc.Location;
idString = initialAlign(i).FileName(12:end-4);
% load white frames
frame0 = imread(fullfile(scanDir, ['sequence_' idString], 'frames0_0.png'));
frame1 = imread(fullfile(scanDir, ['sequence_' idString], 'frames1_0.png'));
%e0Coords = autoDetectMarkers(frame0, ep);
%e1Coords = autoDetectMarkers(frame1, ep);
e0Coords = manuallyDetectMarkers(frame0, ep, P0, Q);
e1Coords = manuallyDetectMarkers(frame1, ep, P1, Q);
e0Coords = undistortPoints(e0Coords, camParams0);
e1Coords = undistortPoints(e1Coords, camParams1);
% match ellipse candidates between cameras based on projection
E0 = projectOntoPointCloud(e0Coords, P0, Q);
E1 = projectOntoPointCloud(e1Coords, P1, Q);
matchedPairs = nan(size(E0, 1), 2);
nMatchedPairs = 0;
for j=1:size(E0, 1)
% should use pdist2 instead..
sqDists = sum((E1 - repmat(E0(j,:), size(E1, 1), 1)).^2, 2);
[minSqDist, minSqDistIdx] = min(sqDists);
if(minSqDist < 5^2)
nMatchedPairs = nMatchedPairs + 1;
matchedPairs(nMatchedPairs, :) = [j, minSqDistIdx];
end
end
matchedPairs = matchedPairs(1:nMatchedPairs, :);
% triangulate marker centers (lens correction has been performed)
E{i} = triangulate(e0Coords(matchedPairs(:, 1),:), e1Coords(matchedPairs(:, 2),:), camStereoParams);
% bring into initial alignment
[U,~,V] = svd(initialAlign(i).Rotation);
Ri = U*V';
Ti = initialAlign(i).Translation;
Eg{i} = E{i}*Ri' + repmat(Ti', size(E{i}, 1), 1);
end
% show found markers in initial alignment
figure;
hold('on');
for i=1:nSubScans
% fix Ri to be orthogonal
[U,~,V] = svd(initialAlign(i).Rotation);
Ri = U*V';
% bring point cloud into initial alignment
pc = pcread(fullfile(scanDir, initialAlign(i).FileName));
tform = affine3d([Ri' [0;0;0]; initialAlign(i).Translation' 1]);
pcg = pctransform(pc, tform);
pcshow(pcg);
xlabel('x');
ylabel('y');
zlabel('z');
plot3(Eg{i}(:,1), Eg{i}(:,2), Eg{i}(:,3), '.', 'MarkerSize', 15);
end
% match markers between poses using initial alignment
Pg = {};
P = {};
for i=1:nSubScans
for j=1:size(Eg{i}, 1)
pg = Eg{i}(j,:);
p = E{i}(j,:);
matched = false;
for k=1:size(Pg, 2)
clusterCenter = mean(cat(1, Pg{:,k}), 1);
if(sum((pg - clusterCenter).^2) < 3^2)
% store in global frame
Pg{i,k} = pg;
% store in local frame
P{i,k} = p;
matched = true;
break;
end
end
% create new cluster
if(not(matched))
Pg{i,end+1} = pg;
P{i,end+1} = p;
end
end
end
% run optimization
alignment = groupwiseOrthogonalProcrustes(P, initialAlign);
for i=1:length(alignment)
alignment(i).FileName = initialAlign(i).FileName;
end
writeMeshLabALN(alignment, strrep(alnFileName, '.aln', '_opt.aln'));
end
function e = autoDetectMarkers(frame, ep)
% create mask based on morphology
bw = imbinarize(rgb2gray(frame));
cc = bwconncomp(bw);
rp = regionprops(cc, 'Area', 'Solidity', 'Eccentricity', 'Centroid');
idx = find([rp.Area] > 100 & [rp.Area] < 1000 & [rp.Solidity] > 0.9);
mask = ismember(labelmatrix(cc), idx);
mask = imdilate(mask, strel('disk', 20, 0));
% detect ellipses within mask
edges = edge(rgb2gray(frame), 'Canny', [0.08 0.1], 2);
edges(~mask) = 0;
ep.numBest = 10;
el = ellipseDetection(edges, ep);
e = el(:, 1:2);
end
function e = manuallyDetectMarkers(frame, ep, P, pointCloud)
e = [];
edges = edge(rgb2gray(frame), 'Canny', [0.08 0.1], 2);
figure;
hold('on');
imshow(frame);
title('Close figure to end.');
set(gcf, 'pointer', 'crosshair');
set(gcf, 'WindowButtonDownFcn', @clickCallback);
uiwait;
function clickCallback(~, ~)
p = get(gca, 'CurrentPoint');
p = p(1, 1:2);
% % create mask around selected point
% mask = false(size(frame, 1), size(frame, 2));
%
% mask(round(p(2)), round(p(1))) = true;
% mask = imdilate(mask, strel('disk', 100, 0));
%
% % detect ellipses within mask
% edgesI = edges;
% edgesI(~mask) = 0;
%
% ep.numBest = 1;
% el = ellipseDetection(edgesI, ep);
%
% ellipse(el(:,3), el(:,4), el(:,5)*pi/180, el(:,1), el(:,2), 'r');
%
% e = [e; el(:, 1:2)];
[el, conf] = detectMarkersSubpix(frame, p, P, pointCloud)
e = [e; el(:, 1:2)];
end
end
function [e, conf] = detectMarkersSubpix(frame, initGuesses, P, Q)
% create mask based on morphology
bw = imbinarize(rgb2gray(frame));
cc = bwconncomp(bw);
labels = labelmatrix(cc);
% project point cloud into image
q = [Q ones(size(Q,1),1)]*P;
q = q./[q(:,3) q(:,3) q(:,3)];
for i=1:size(initGuesses, 1)
labelId = labels(round(initGuesses(i,2)), round(initGuesses(i,1)));
labelMask = (labels == labelId);
labelMask = imdilate(labelMask, strel('disk', 3, 0));
% determine 3D points that are part of the marker
pointMask = false(size(q, 1), 1);
for j=1:size(q,1)
if(labelMask(round(q(j,2)), round(q(j,1))))
pointMask(j) = true;
end
end
% build homography
H = fitgeotrans(Q(pointMask, :), q(pointMask, :), 'projective');
end
e = initGuesses;
conf = 1.0;
end
function E = projectOntoPointCloud(e, P, pointCloud)
q = [pointCloud ones(size(pointCloud,1),1)]*P;
q = q(:,1:2)./[q(:,3) q(:,3)];
E = nan(size(e,1), 3);
for i=1:size(e, 1)
sqDists = sum((q - repmat(e(i,:), size(q, 1), 1)).^2, 2);
[minSqDist, minSqDistIdx] = min(sqDists);
if(minSqDist < 2^2)
E(i, :) = pointCloud(minSqDistIdx, :);
end
end
end