Rev 241 | Blame | Compare with Previous | Last modification | View Log | RSS feed
function [alignment] = groupwiseOrthogonalProcrustes(P, initialAlign)
%groupwiseOrthogonalProcrustes Computes rototranslations to bring Np
% matched point sets into alignment using non-linear optimization.
%
% Input:
% P: (Np x Nc) cell array containing point coordinates in matched order.
% empty cells indicate that the corresponding point set does not
% include a point matched to that cluster.
% initialAlignment: a Np length struct with fields Rotation (3x3 matrix)
% and Translation (3-vector) for each of the point sets.
%
% Output:
% alignment: a struct with fields Rotation (3x3 matrix) and Translation
% (3-vector) for each of the point sets.
%
Np = size(P, 1);
assert(length(initialAlign) >= Np);
% parameter vector contains relative axis angle and translations for all Np
% point sets
xInit = zeros(6*Np, 1);
% for i=1:Np
% [w, theta] = rmat2axis(initialAlign(i).Rotation);
% xInit((i-1)*6+1:(i-1)*6+3) = w*theta;
% xInit((i-1)*6+4:(i-1)*6+6) = initialAlign(i).Translation;
% end
options = optimoptions('lsqnonlin', 'Display', 'iter-detailed');
[x, ~, ~] = lsqnonlin(@orthProcFun, xInit, [], [], options);
alignment = struct('Rotation', {}, 'Translation', {});
for i=1:Np
wi = x((i-1)*6+1:(i-1)*6+3);
Ri = initialAlign(i).Rotation * axis2rmat(wi, norm(wi));
Ti = initialAlign(i).Translation + x((i-1)*6+4:(i-1)*6+6);
alignment(i).Rotation = Ri;
alignment(i).Translation =Ti;
end
% objective function
function e = orthProcFun(x)
Nc = size(P, 2);
% transform all points according to current x
Pbar = cell(size(P));
for j=1:Np
wi = x((j-1)*6+1:(j-1)*6+3);
Ri = initialAlign(j).Rotation * axis2rmat(wi, norm(wi));
Ti = initialAlign(j).Translation + x((j-1)*6+4:(j-1)*6+6);
for k=1:Nc
if(not(isempty(P{j,k})))
Pbar{j,k} = P{j,k}*Ri' + Ti';
end
end
end
% include all pairwise distances
e = [];
for j=1:Nc
% points in current cluster
c = cat(1, Pbar{:,j});
Ncj = size(c, 1);
if(Ncj < 2)
continue;
end
for k=1:Ncj-1
for l=k+1:Ncj
dVec = c(k,:) - c(l,:);
e(end+1:end+3) = dVec;
end
end
end
end
% output function called at every iteration
function stop = outfun(x, optimValues, ~)
%display(x);
hold('on');
plot(optimValues.residual);
drawnow;
stop = false;
end
end
function [w, theta] = rmat2axis(R)
w = zeros(3, 1);
%theta = zeros(1, 1);
[V,D] = eig(R);
[~,ix] = min(abs(diag(D)-1));
w(:) = V(:,ix);
t = [R(3,2)-R(2,3),R(1,3)-R(3,1),R(2,1)-R(1,2)];
theta = atan2(t*w(:),trace(R(:,:))-1);
if theta<0
theta = -theta;
w(:) = -w(:);
end
end
function R = axis2rmat(w, theta)
P = w*transpose(w);
Q = [0 -w(3) w(2);
w(3) 0 -w(1);
-w(2) w(1) 0];
% using Rodigues' rotation formula
R = P + (eye(3) - P)*cos(theta) + Q*sin(theta);
% ensure orthonormal matrix
[U,~,V] = svd(R);
R = U*V';
end