209 |
jakw |
1 |
% =========================================================================================
|
|
|
2 |
% Author: Andre A. Boechat
|
|
|
3 |
% File: hough_ellipse.m
|
|
|
4 |
% Date: February 27, 2014, 10:12:22 AM
|
|
|
5 |
% Description: Implementation of the classical Hough Transform algorithm to detect
|
|
|
6 |
% ellipses.
|
|
|
7 |
%
|
|
|
8 |
% Reference:
|
|
|
9 |
% [1] Y. Xie and Q. Ji, “A new efficient ellipse detection method,” Pattern
|
|
|
10 |
% Recognition, 2002. Proceedings. 16th …, vol. 2, pp. 957–960, 2002.
|
|
|
11 |
%
|
|
|
12 |
% [2] http://en.wikipedia.org/wiki/Hough_transform
|
|
|
13 |
% [3] http://en.wikipedia.org/wiki/Randomized_Hough_transform
|
|
|
14 |
% =========================================================================================
|
|
|
15 |
%
|
|
|
16 |
% Usage:
|
|
|
17 |
% [PARAMETERS] = hough_ellipse(IMG, MIN2A = 10, MIN_VOTES = 10)
|
|
|
18 |
%
|
|
|
19 |
% Inputs:
|
|
|
20 |
% IMG is the inputs image. Images composed of only edges are better.
|
|
|
21 |
% MIN2A is the minimum length of the major axis (default 10).
|
|
|
22 |
% MIN_VOTES is the minimum number of votes on a "b" value (half-length of the minor
|
|
|
23 |
% axis) to validate the existence of an ellipse.
|
|
|
24 |
%
|
|
|
25 |
% Outputs:
|
|
|
26 |
% PARAMETERS is the parameters of the best fitted ellipse on the image and is
|
|
|
27 |
% composed of [x0 y0 a b alpha] (ellipse's center, major and minor
|
|
|
28 |
% half-length axis and orientation, respectively).
|
|
|
29 |
%
|
|
|
30 |
%
|
|
|
31 |
% Possible improvement: to return a matrix with all best fitted ellipses on the
|
|
|
32 |
% image. It adds another loop to the algorithm.
|
|
|
33 |
|
|
|
34 |
function [parameters] = hough_ellipse(img, min2a, min_votes)
|
|
|
35 |
|
|
|
36 |
[width height] = size(img);
|
|
|
37 |
%% Finding all nonzero pixels of the image, possible ellipse's pixels.
|
|
|
38 |
[ys xs] = find(img);
|
|
|
39 |
pixels = [xs ys];
|
|
|
40 |
%% Accumulator for the minor axis' half-length. The indexes correspond to the
|
|
|
41 |
%% possible b values.
|
|
|
42 |
%% TODO: the data structure can be improved (tree with the possible values?).
|
|
|
43 |
acc = zeros(1, max(width, height)/2);
|
|
|
44 |
%% ij1, ij2 are indexes of (x1, y1) and (x2, y2), following the reference [1].
|
|
|
45 |
for ij1 = 1:(length(xs)-1)
|
|
|
46 |
for ij2 = length(xs):-1:(ij1+1)
|
|
|
47 |
x1 = pixels(ij1, 1);
|
|
|
48 |
y1 = pixels(ij1, 2);
|
|
|
49 |
x2 = pixels(ij2, 1);
|
|
|
50 |
y2 = pixels(ij2, 2);
|
|
|
51 |
d12 = norm([x1 y1] - [x2 y2]);
|
|
|
52 |
acc = acc * 0;
|
|
|
53 |
if x1 - x2 && d12 > min2a
|
|
|
54 |
%% Center
|
|
|
55 |
x0 = (x1 + x2)/2;
|
|
|
56 |
y0 = (y1 + y2)/2;
|
|
|
57 |
%% Half-length of the major axis.
|
|
|
58 |
a = d12/2;
|
|
|
59 |
%% Orientation.
|
|
|
60 |
alpha = atan((y2 - y1)/(x2 - x1));
|
|
|
61 |
%% Distances between the two points and the center.
|
|
|
62 |
d01 = norm([x1 y1] - [x0 y0]);
|
|
|
63 |
d02 = norm([x2 y2] - [x0 y0]);
|
|
|
64 |
for ij3 = 1:length(xs)
|
|
|
65 |
%% The third point must be a different point, obviously.
|
|
|
66 |
if (ij3 == ij1) && (ij3 == ij2)
|
|
|
67 |
continue;
|
|
|
68 |
end
|
|
|
69 |
x3 = pixels(ij3, 1);
|
|
|
70 |
y3 = pixels(ij3, 2);
|
|
|
71 |
d03 = norm([x3 y3] - [x0 y0]);
|
|
|
72 |
%% Distance f
|
|
|
73 |
if d03 >= a
|
|
|
74 |
continue;
|
|
|
75 |
end
|
|
|
76 |
f = norm([x3 y3] - [x2 y2]);
|
|
|
77 |
%% Estimating the half-length of the minor axis.
|
|
|
78 |
cos2_tau = ((a^2 + d03^2 - f^2) / (2 * a * d03))^2;
|
|
|
79 |
sin2_tau = 1 - cos2_tau;
|
|
|
80 |
b = round(sqrt((a^2 * d03^2 * sin2_tau) /...
|
|
|
81 |
(a^2 - d03^2 * cos2_tau)));
|
|
|
82 |
%% Changing the score of the accumulator, if b is a valid value.
|
|
|
83 |
%% NOTE: the accumulator's length gives us the biggest expected
|
|
|
84 |
%% value for b, which means, in this current implementation,
|
|
|
85 |
%% we wouldn't detect ellipses whose half of minor axis is
|
|
|
86 |
%% greater than the image's size (look at the acc's declaration).
|
|
|
87 |
if b > 0 && b <= length(acc)
|
|
|
88 |
acc(b) = acc(b)+1;
|
|
|
89 |
end
|
|
|
90 |
end
|
|
|
91 |
%% Taking the highest score.
|
|
|
92 |
[sv si] = max(acc);
|
|
|
93 |
if sv > min_votes
|
|
|
94 |
%% Ellipse detected!
|
|
|
95 |
%% The index si gives us the best b value.
|
|
|
96 |
parameters = [x0 y0 a si alpha];
|
|
|
97 |
return;
|
|
|
98 |
end
|
|
|
99 |
end
|
|
|
100 |
end
|
|
|
101 |
end
|
|
|
102 |
printf("No ellipses detected!\n");
|
|
|
103 |
end
|
|
|
104 |
|