Subversion Repositories seema-scanner

Rev

Rev 242 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 242 Rev 249
1
#include "SMCalibrationWorker.h"
1
#include "SMCalibrationWorker.h"
2
#include "SMCalibrationParameters.h"
2
#include "SMCalibrationParameters.h"
3
 
3
 
4
#include "cvtools.h"
4
#include "cvtools.h"
5
 
5
 
-
 
6
#include <opencv2/aruco/charuco.hpp>
-
 
7
 
6
#include <QSettings>
8
#include <QSettings>
7
#include <QTextStream>
9
#include <QTextStream>
8
 
10
 
9
#include <ceres/ceres.h>
11
#include <ceres/ceres.h>
10
 
12
 
11
// Closed form solution to solve for the rotation axis from sets of 3D point coordinates of flat pattern feature points
13
// Closed form solution to solve for the rotation axis from sets of 3D point coordinates of flat pattern feature points
12
// Algorithm according to Chen et al., Rotation axis calibration of a turntable using constrained global optimization, Optik 2014
14
// Algorithm according to Chen et al., Rotation axis calibration of a turntable using constrained global optimization, Optik 2014
13
// DTU, 2014, Jakob Wilm
15
// DTU, 2014, Jakob Wilm
14
static void rotationAxisEstimation(const std::vector< std::vector<cv::Point3f> > Qcam,
16
static void rotationAxisEstimation(const std::vector< std::vector<cv::Point3f> > Qcam,
15
                                   const std::vector<cv::Point3f> Qobj,
17
                                   const std::vector<cv::Point3f> Qobj,
16
                                   cv::Vec3f &axis, cv::Vec3f &point){
18
                                   cv::Vec3f &axis, cv::Vec3f &point){
17
    assert(Qobj.size() == Qcam[0].size());
19
    assert(Qobj.size() == Qcam[0].size());
18
 
20
 
19
    // number of frames (points on each arch)
21
    // number of frames (points on each arch)
20
    int l = Qcam.size();
22
    int l = Qcam.size();
21
 
23
 
22
    // number of points in each frame
24
    // number of points in each frame
23
    size_t mn = Qobj.size();
25
    size_t mn = Qobj.size();
24
 
26
 
25
    // construct matrix for axis determination
27
    // construct matrix for axis determination
26
    cv::Mat M(6, 6, CV_32F, cv::Scalar(0));
28
    cv::Mat M(6, 6, CV_32F, cv::Scalar(0));
27
 
29
 
28
    for(int k=0; k<l; k++){
30
    for(int k=0; k<l; k++){
29
        for(unsigned int idx=0; idx<mn; idx++){
31
        for(unsigned int idx=0; idx<mn; idx++){
30
 
32
 
31
            //            float i = Qobj[idx].x+4;
33
            //            float i = Qobj[idx].x+4;
32
            //            float j = Qobj[idx].y+4;
34
            //            float j = Qobj[idx].y+4;
33
            float i = Qobj[idx].x;
35
            float i = Qobj[idx].x;
34
            float j = Qobj[idx].y;
36
            float j = Qobj[idx].y;
35
 
37
 
36
            float x = Qcam[k][idx].x;
38
            float x = Qcam[k][idx].x;
37
            float y = Qcam[k][idx].y;
39
            float y = Qcam[k][idx].y;
38
            float z = Qcam[k][idx].z;
40
            float z = Qcam[k][idx].z;
39
 
41
 
40
            M += (cv::Mat_<float>(6,6) << x*x, x*y, x*z, x, i*x, j*x,
42
            M += (cv::Mat_<float>(6,6) << x*x, x*y, x*z, x, i*x, j*x,
41
                  0, y*y, y*z, y, i*y, j*y,
43
                  0, y*y, y*z, y, i*y, j*y,
42
                  0,   0, z*z, z, i*z, j*z,
44
                  0,   0, z*z, z, i*z, j*z,
43
                  0,   0,   0, 1,   i,   j,
45
                  0,   0,   0, 1,   i,   j,
44
                  0,   0,   0, 0, i*i, i*j,
46
                  0,   0,   0, 0, i*i, i*j,
45
                  0,   0,   0, 0,   0, j*j);
47
                  0,   0,   0, 0,   0, j*j);
46
 
48
 
47
        }
49
        }
48
    }
50
    }
49
 
51
 
50
    cv::completeSymm(M, false);
52
    cv::completeSymm(M, false);
51
 
53
 
52
    // solve for axis
54
    // solve for axis
53
    std::vector<float> lambda;
55
    std::vector<float> lambda;
54
    cv::Mat u;
56
    cv::Mat u;
55
    cv::eigen(M, lambda, u);
57
    cv::eigen(M, lambda, u);
56
 
58
 
57
    float minLambda = std::abs(lambda[0]);
59
    float minLambda = std::abs(lambda[0]);
58
    int idx = 0;
60
    int idx = 0;
59
    for(unsigned int i=1; i<lambda.size(); i++){
61
    for(unsigned int i=1; i<lambda.size(); i++){
60
        if(abs(lambda[i]) < minLambda){
62
        if(abs(lambda[i]) < minLambda){
61
            minLambda = lambda[i];
63
            minLambda = lambda[i];
62
            idx = i;
64
            idx = i;
63
        }
65
        }
64
    }
66
    }
65
 
67
 
66
    axis = u.row(idx).colRange(0, 3);
68
    axis = u.row(idx).colRange(0, 3);
67
    axis = cv::normalize(axis);
69
    axis = cv::normalize(axis);
68
 
70
 
69
    float nx = u.at<float>(idx, 0);
71
    float nx = u.at<float>(idx, 0);
70
    float ny = u.at<float>(idx, 1);
72
    float ny = u.at<float>(idx, 1);
71
    float nz = u.at<float>(idx, 2);
73
    float nz = u.at<float>(idx, 2);
72
    //float d  = u.at<float>(idx, 3);
74
    //float d  = u.at<float>(idx, 3);
73
    float dh = u.at<float>(idx, 4);
75
    float dh = u.at<float>(idx, 4);
74
    float dv = u.at<float>(idx, 5);
76
    float dv = u.at<float>(idx, 5);
75
 
77
 
76
    // Paper version: c is initially eliminated
78
    // Paper version: c is initially eliminated
77
    /*cv::Mat A(l*mn, mn+2, CV_32F, cv::Scalar(0.0));
79
    /*cv::Mat A(l*mn, mn+2, CV_32F, cv::Scalar(0.0));
78
        cv::Mat bb(l*mn, 1, CV_32F);
80
        cv::Mat bb(l*mn, 1, CV_32F);
79
 
81
 
80
        for(int k=0; k<l; k++){
82
        for(int k=0; k<l; k++){
81
            for(unsigned int idx=0; idx<mn; idx++){
83
            for(unsigned int idx=0; idx<mn; idx++){
82
 
84
 
83
                float i = Qobj[idx].x;
85
                float i = Qobj[idx].x;
84
                float j = Qobj[idx].y;
86
                float j = Qobj[idx].y;
85
 
87
 
86
                float x = Qcam[k][idx].x;
88
                float x = Qcam[k][idx].x;
87
                float y = Qcam[k][idx].y;
89
                float y = Qcam[k][idx].y;
88
                float z = Qcam[k][idx].z;
90
                float z = Qcam[k][idx].z;
89
 
91
 
90
                float f = x*x + y*y + z*z + (2*x*nx + 2*y*ny + 2*z*nz)*(i*dh + j*dv);
92
                float f = x*x + y*y + z*z + (2*x*nx + 2*y*ny + 2*z*nz)*(i*dh + j*dv);
91
 
93
 
92
                int row = k*mn+idx;
94
                int row = k*mn+idx;
93
                A.at<float>(row, 0) = 2*x - (2*z*nx)/nz;
95
                A.at<float>(row, 0) = 2*x - (2*z*nx)/nz;
94
                A.at<float>(row, 1) = 2*y - (2*z*ny)/nz;
96
                A.at<float>(row, 1) = 2*y - (2*z*ny)/nz;
95
                A.at<float>(row, idx+2) = 1.0;
97
                A.at<float>(row, idx+2) = 1.0;
96
 
98
 
97
                bb.at<float>(row, 0) = f + (2*z*d)/nz;
99
                bb.at<float>(row, 0) = f + (2*z*d)/nz;
98
            }
100
            }
99
        }
101
        }
100
 
102
 
101
        // solve for point
103
        // solve for point
102
        cv::Mat abe;
104
        cv::Mat abe;
103
        cv::solve(A, bb, abe, cv::DECOMP_SVD);
105
        cv::solve(A, bb, abe, cv::DECOMP_SVD);
104
 
106
 
105
        float a = abe.at<float>(0, 0);
107
        float a = abe.at<float>(0, 0);
106
        float b = abe.at<float>(1, 0);
108
        float b = abe.at<float>(1, 0);
107
        float c = -(nx*a+ny*b+d)/nz;
109
        float c = -(nx*a+ny*b+d)/nz;
108
        */
110
        */
109
 
111
 
110
    // Our version: solve simultanously for a,b,c
112
    // Our version: solve simultanously for a,b,c
111
    cv::Mat A(l*mn, mn+3, CV_32F, cv::Scalar(0.0));
113
    cv::Mat A(l*mn, mn+3, CV_32F, cv::Scalar(0.0));
112
    cv::Mat bb(l*mn, 1, CV_32F);
114
    cv::Mat bb(l*mn, 1, CV_32F);
113
 
115
 
114
    for(int k=0; k<l; k++){
116
    for(int k=0; k<l; k++){
115
        for(unsigned int idx=0; idx<mn; idx++){
117
        for(unsigned int idx=0; idx<mn; idx++){
116
 
118
 
117
            float i = Qobj[idx].x;
119
            float i = Qobj[idx].x;
118
            float j = Qobj[idx].y;
120
            float j = Qobj[idx].y;
119
 
121
 
120
            float x = Qcam[k][idx].x;
122
            float x = Qcam[k][idx].x;
121
            float y = Qcam[k][idx].y;
123
            float y = Qcam[k][idx].y;
122
            float z = Qcam[k][idx].z;
124
            float z = Qcam[k][idx].z;
123
 
125
 
124
            float f = x*x + y*y + z*z + (2*x*nx + 2*y*ny + 2*z*nz)*(i*dh + j*dv);
126
            float f = x*x + y*y + z*z + (2*x*nx + 2*y*ny + 2*z*nz)*(i*dh + j*dv);
125
 
127
 
126
            int row = k*mn+idx;
128
            int row = k*mn+idx;
127
            A.at<float>(row, 0) = 2*x;
129
            A.at<float>(row, 0) = 2*x;
128
            A.at<float>(row, 1) = 2*y;
130
            A.at<float>(row, 1) = 2*y;
129
            A.at<float>(row, 2) = 2*z;
131
            A.at<float>(row, 2) = 2*z;
130
            A.at<float>(row, idx+3) = 1.0;
132
            A.at<float>(row, idx+3) = 1.0;
131
 
133
 
132
            bb.at<float>(row, 0) = f;
134
            bb.at<float>(row, 0) = f;
133
        }
135
        }
134
    }
136
    }
135
 
137
 
136
    // solve for point
138
    // solve for point
137
    cv::Mat abe;
139
    cv::Mat abe;
138
    cv::solve(A, bb, abe, cv::DECOMP_SVD);
140
    cv::solve(A, bb, abe, cv::DECOMP_SVD);
139
 
141
 
140
    float a = abe.at<float>(0, 0);
142
    float a = abe.at<float>(0, 0);
141
    float b = abe.at<float>(1, 0);
143
    float b = abe.at<float>(1, 0);
142
    float c = abe.at<float>(2, 0);
144
    float c = abe.at<float>(2, 0);
143
 
145
 
144
    point[0] = a;
146
    point[0] = a;
145
    point[1] = b;
147
    point[1] = b;
146
    point[2] = c;
148
    point[2] = c;
147
 
149
 
148
}
150
}
149
 
151
 
150
struct CircleResidual {
152
struct CircleResidual {
151
    CircleResidual(std::vector<cv::Point3f> _pointsOnArc)
153
    CircleResidual(std::vector<cv::Point3f> _pointsOnArc)
152
        : pointsOnArc(_pointsOnArc) {}
154
        : pointsOnArc(_pointsOnArc) {}
153
 
155
 
154
    template <typename T>
156
    template <typename T>
155
    bool operator()(const T* point, const T* axis, T* residual) const {
157
    bool operator()(const T* point, const T* axis, T* residual) const {
156
 
158
 
157
        T axisSqNorm = axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2];
159
        T axisSqNorm = axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2];
158
 
160
 
159
        unsigned int l = pointsOnArc.size();
161
        unsigned int l = pointsOnArc.size();
160
        std::vector<T> dI(l);
162
        std::vector<T> dI(l);
161
 
163
 
162
        // note, this is automatically initialized to 0
164
        // note, this is automatically initialized to 0
163
        T sum(0.0);
165
        T sum(0.0);
164
 
166
 
165
        for(unsigned int i=0; i<l; i++){
167
        for(unsigned int i=0; i<l; i++){
166
            cv::Point3d p = pointsOnArc[i];
168
            cv::Point3d p = pointsOnArc[i];
167
            //T p[3] = {pointsOnArc[i].x, pointsOnArc[i].y, pointsOnArc[i].z};
169
            //T p[3] = {pointsOnArc[i].x, pointsOnArc[i].y, pointsOnArc[i].z};
168
 
170
 
169
            // point to line distance
171
            // point to line distance
170
            T dotProd = (point[0]-p.x)*axis[0] + (point[1]-p.y)*axis[1] + (point[2]-p.z)*axis[2];
172
            T dotProd = (point[0]-p.x)*axis[0] + (point[1]-p.y)*axis[1] + (point[2]-p.z)*axis[2];
171
            T dIx = point[0] - p.x - (dotProd*axis[0]/axisSqNorm);
173
            T dIx = point[0] - p.x - (dotProd*axis[0]/axisSqNorm);
172
            T dIy = point[1] - p.y - (dotProd*axis[1]/axisSqNorm);
174
            T dIy = point[1] - p.y - (dotProd*axis[1]/axisSqNorm);
173
            T dIz = point[2] - p.z - (dotProd*axis[2]/axisSqNorm);
175
            T dIz = point[2] - p.z - (dotProd*axis[2]/axisSqNorm);
174
            dI[i] = ceres::sqrt(dIx*dIx + dIy*dIy + dIz*dIz);
176
            dI[i] = ceres::sqrt(dIx*dIx + dIy*dIy + dIz*dIz);
175
 
177
 
176
            sum += dI[i];
178
            sum += dI[i];
177
        }
179
        }
178
 
180
 
179
        T mean = sum / double(l);
181
        T mean = sum / double(l);
180
 
182
 
181
        for(unsigned int i=0; i<l; i++){
183
        for(unsigned int i=0; i<l; i++){
182
            residual[i] = dI[i] - mean;
184
            residual[i] = dI[i] - mean;
183
        }
185
        }
184
 
186
 
185
        return true;
187
        return true;
186
    }
188
    }
187
 
189
 
188
    private:
190
    private:
189
        // Observations for one checkerboard corner.
191
        // Observations for one checkerboard corner.
190
        const std::vector<cv::Point3f> pointsOnArc;
192
        const std::vector<cv::Point3f> pointsOnArc;
191
};
193
};
192
 
194
 
193
static void rotationAxisOptimization(const std::vector< std::vector<cv::Point3f> > Qcam, const std::vector<cv::Point3f> Qobj, cv::Vec3f &axis, cv::Vec3f &point, float &error){
195
static void rotationAxisOptimization(const std::vector< std::vector<cv::Point3f> > Qcam, const std::vector<cv::Point3f> Qobj, cv::Vec3f &axis, cv::Vec3f &point, float &error){
194
 
196
 
195
    // number of frames (points on each arch)
197
    // number of frames (points on each arch)
196
    size_t l = Qcam.size();
198
    size_t l = Qcam.size();
197
 
199
 
198
    // number of points in each frame
200
    // number of points in each frame
199
    size_t mn = Qobj.size();
201
    size_t mn = Qobj.size();
200
 
202
 
201
    // read initial guess
203
    // read initial guess
202
    double pointArray[] = {point[0], point[1], point[2]};
204
    double pointArray[] = {point[0], point[1], point[2]};
203
    double axisArray[] = {axis[0], axis[1], axis[2]};
205
    double axisArray[] = {axis[0], axis[1], axis[2]};
204
 
206
 
205
    ceres::Problem problem;
207
    ceres::Problem problem;
206
 
208
 
207
    // loop through saddle points
209
    // loop through saddle points
208
    for(unsigned int idx=0; idx<mn; idx++){
210
    for(unsigned int idx=0; idx<mn; idx++){
209
        std::vector<cv::Point3f> pointsOnArch(l);
211
        std::vector<cv::Point3f> pointsOnArch(l);
210
        for(unsigned int k=0; k<l; k++){
212
        for(unsigned int k=0; k<l; k++){
211
            pointsOnArch[k] = Qcam[k][idx];
213
            pointsOnArch[k] = Qcam[k][idx];
212
        }
214
        }
213
        ceres::CostFunction* cost_function =
215
        ceres::CostFunction* cost_function =
214
                new ceres::AutoDiffCostFunction<CircleResidual, ceres::DYNAMIC, 3, 3>(
216
                new ceres::AutoDiffCostFunction<CircleResidual, ceres::DYNAMIC, 3, 3>(
215
                    new CircleResidual(pointsOnArch), l);
217
                    new CircleResidual(pointsOnArch), l);
216
        problem.AddResidualBlock(cost_function, NULL, pointArray, axisArray);
218
        problem.AddResidualBlock(cost_function, NULL, pointArray, axisArray);
217
    }
219
    }
218
 
220
 
219
    // Run the solver!
221
    // Run the solver!
220
    ceres::Solver::Options options;
222
    ceres::Solver::Options options;
221
    options.linear_solver_type = ceres::DENSE_QR;
223
    options.linear_solver_type = ceres::DENSE_QR;
222
    options.minimizer_progress_to_stdout = true;
224
    options.minimizer_progress_to_stdout = true;
223
    ceres::Solver::Summary summary;
225
    ceres::Solver::Summary summary;
224
    ceres::Solve(options, &problem, &summary);
226
    ceres::Solve(options, &problem, &summary);
225
 
227
 
226
    std::cout << summary.BriefReport() << "\n";
228
    std::cout << summary.BriefReport() << "\n";
227
 
229
 
228
    point = cv::Vec3f(pointArray[0], pointArray[1], pointArray[2]);
230
    point = cv::Vec3f(pointArray[0], pointArray[1], pointArray[2]);
229
    axis = cv::Vec3f(axisArray[0], axisArray[1], axisArray[2]);
231
    axis = cv::Vec3f(axisArray[0], axisArray[1], axisArray[2]);
230
    axis /= cv::norm(axis);
232
    axis /= cv::norm(axis);
231
 
233
 
232
 
234
 
233
    // Error estimate (sum of squared differences)
235
    // Error estimate (sum of squared differences)
234
    error = 0;
236
    error = 0;
235
    // loop through saddle points
237
    // loop through saddle points
236
    for(unsigned int idx=0; idx<mn; idx++){
238
    for(unsigned int idx=0; idx<mn; idx++){
237
 
239
 
238
        // vector of distances from rotation axis
240
        // vector of distances from rotation axis
239
        std::vector<float> dI(l);
241
        std::vector<float> dI(l);
240
        // loop through angular positions
242
        // loop through angular positions
241
        for(unsigned int k=0; k<l; k++){
243
        for(unsigned int k=0; k<l; k++){
242
            cv::Vec3f p = cv::Vec3f(Qcam[k][idx]);
244
            cv::Vec3f p = cv::Vec3f(Qcam[k][idx]);
243
            // point to line distance
245
            // point to line distance
244
            dI[k] = cv::norm((point-p)-(point-p).dot(axis)*axis);
246
            dI[k] = cv::norm((point-p)-(point-p).dot(axis)*axis);
245
        }
247
        }
246
        float sum = std::accumulate(dI.begin(), dI.end(), 0.0);
248
        float sum = std::accumulate(dI.begin(), dI.end(), 0.0);
247
        float mean = sum / dI.size();
249
        float mean = sum / dI.size();
248
        float meanDev = 0;
250
        float meanDev = 0;
249
        for(unsigned int k=0; k<l; k++){
251
        for(unsigned int k=0; k<l; k++){
250
            meanDev += std::abs(dI[k] - mean);
252
            meanDev += std::abs(dI[k] - mean);
251
        }
253
        }
252
        meanDev /= l;
254
        meanDev /= l;
253
        error += meanDev;
255
        error += meanDev;
254
    }
256
    }
255
    error /= mn;
257
    error /= mn;
256
}
258
}
257
 
259
 
258
static std::vector<cv::Point3f> generateWorldCoords(const cv::Size checkerCount, const float checkerSize){
260
static std::vector<cv::Point3f> generateWorldCoords(const cv::Size checkerCount, const float checkerSize){
259
 
261
 
260
    std::vector<cv::Point3f> Qi;
262
    std::vector<cv::Point3f> Qi;
261
    for (int h=0; h<checkerCount.height; h++)
263
    for (int h=0; h<checkerCount.height; h++)
262
        for (int w=0; w<checkerCount.width; w++)
264
        for (int w=0; w<checkerCount.width; w++)
263
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
265
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
264
 
266
 
265
    return Qi;
267
    return Qi;
266
}
268
}
267
 
269
 
268
static bool detectCheckerBoardCorners(const cv::Size & checkerCount,
270
static bool detectCheckerBoardCorners(const cv::Size & checkerCount,
269
                                    const cv::Mat & frame,
271
                                    const cv::Mat & frame,
270
                                    cv::Mat & frameResult,
272
                                    cv::Mat & frameResult,
271
                                    std::vector<cv::Point2f> & qc){
273
                                    std::vector<cv::Point2f> & qc){
272
    // Convert to grayscale
274
    // Convert to grayscale
273
    cv::Mat gray;
275
    cv::Mat gray;
274
    if(frame.channels() == 1)
276
    if(frame.channels() == 1)
275
        cv::cvtColor(frame, gray, CV_BayerBG2GRAY);
277
        cv::cvtColor(frame, gray, CV_BayerBG2GRAY);
276
    else
278
    else
277
        cv::cvtColor(frame, gray, CV_RGB2GRAY);
279
        cv::cvtColor(frame, gray, CV_RGB2GRAY);
278
 
280
 
279
    // Extract checker corners
281
    // Extract checker corners
280
    bool success = cv::findChessboardCorners(gray, checkerCount, qc, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
282
    bool success = cv::findChessboardCorners(gray, checkerCount, qc, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
281
    if(success){
283
    if(success){
282
        cv::cornerSubPix(gray, qc, cv::Size(6, 6), cv::Size(1, 1), cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.0001));
284
        cv::cornerSubPix(gray, qc, cv::Size(6, 6), cv::Size(1, 1), cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.0001));
283
        // Draw colored chessboard
285
        // Draw colored chessboard
284
        if(frame.channels() == 1)
286
        if(frame.channels() == 1)
285
            cv::cvtColor(frame, frameResult, CV_BayerBG2RGB);
287
            cv::cvtColor(frame, frameResult, CV_BayerBG2RGB);
286
        else
288
        else
287
            frameResult = frame.clone();
289
            frameResult = frame.clone();
288
 
290
 
289
        cvtools::drawChessboardCorners(frameResult, checkerCount, qc, success, 10);
291
        cvtools::drawChessboardCorners(frameResult, checkerCount, qc, success, 10);
290
    } else {
292
    } else {
291
        qc.clear();
293
        qc.clear();
292
    }
294
    }
293
    return success;
295
    return success;
294
}
296
}
295
 
297
 
296
void SMCalibrationWorker::checkerboardDetection(SMCalibrationSet calibrationSet){
298
void SMCalibrationWorker::checkerboardDetection(SMCalibrationSet calibrationSet){
297
 
299
 
298
    QSettings settings;
300
    QSettings settings;
299
    cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(), settings.value("calibration/patternSizeY", 13).toInt()));
301
    cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(), settings.value("calibration/patternSizeY", 13).toInt()));
300
 
302
 
301
    bool success0 = detectCheckerBoardCorners(checkerCount, calibrationSet.frame0, calibrationSet.frame0Result, calibrationSet.qc0);
303
    bool success0 = detectCheckerBoardCorners(checkerCount, calibrationSet.frame0, calibrationSet.frame0Result, calibrationSet.qc0);
302
    if(!success0){
304
    if(!success0){
303
//        calibrationSet.qc0.clear();
305
//        calibrationSet.qc0.clear();
304
        emit logMessage(QString("Could not detect checkerboard on set %1 camera0").arg(calibrationSet.id));
306
        emit logMessage(QString("Could not detect checkerboard on set %1 camera0").arg(calibrationSet.id));
305
        std::cerr << "Could not detect checkerboard on set " << calibrationSet.id << " camera0" << std::endl;
307
        std::cerr << "Could not detect checkerboard on set " << calibrationSet.id << " camera0" << std::endl;
306
    }
308
    }
307
 
309
 
308
    bool success1 = detectCheckerBoardCorners(checkerCount, calibrationSet.frame1, calibrationSet.frame1Result, calibrationSet.qc1);
310
    bool success1 = detectCheckerBoardCorners(checkerCount, calibrationSet.frame1, calibrationSet.frame1Result, calibrationSet.qc1);
309
    if(!success1){
311
    if(!success1){
310
//        calibrationSet.qc1.clear();
312
//        calibrationSet.qc1.clear();
311
        emit logMessage(QString("Could not detect checkerboard on set %1 camera1").arg(calibrationSet.id));
313
        emit logMessage(QString("Could not detect checkerboard on set %1 camera1").arg(calibrationSet.id));
312
        std::cerr << "Could not detect checkerboard on set " << calibrationSet.id << " camera1" << std::endl;
314
        std::cerr << "Could not detect checkerboard on set " << calibrationSet.id << " camera1" << std::endl;
313
    }
315
    }
314
 
316
 
315
    emit newCheckerboardResult(calibrationSet.id, calibrationSet);
317
    emit newCheckerboardResult(calibrationSet.id, calibrationSet);
316
 
318
 
317
}
319
}
318
 
320
 
319
void SMCalibrationWorker::cameraCalibration(std::vector<SMCalibrationSet> calibrationData){
321
void SMCalibrationWorker::cameraCalibration(std::vector<SMCalibrationSet> calibrationData){
320
 
322
 
321
    QSettings settings;
323
    QSettings settings;
322
    cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(), settings.value("calibration/patternSizeY", 13).toInt()));
324
    cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(), settings.value("calibration/patternSizeY", 13).toInt()));
323
 
325
 
324
    unsigned int nSets = calibrationData.size();
326
    unsigned int nSets = calibrationData.size();
325
 
327
 
326
    // 2D Points collected for OpenCV's calibration procedures
328
    // 2D Points collected for OpenCV's calibration procedures
327
    std::vector< std::vector<cv::Point2f> > qc0, qc1, qc0Stereo, qc1Stereo;
329
    std::vector< std::vector<cv::Point2f> > qc0, qc1, qc0Stereo, qc1Stereo;
328
 
330
 
329
    for(unsigned int i=0; i<nSets; i++){
331
    for(unsigned int i=0; i<nSets; i++){
330
 
332
 
331
        if(!calibrationData[i].selected)
333
        if(!calibrationData[i].selected)
332
            continue;
334
            continue;
333
 
335
 
334
        // Note: avoiding push_back has only minor theoretical value
336
        // Note: avoiding push_back has only minor theoretical value
335
        if(!calibrationData[i].qc0.empty())
337
        if(!calibrationData[i].qc0.empty())
336
            qc0.push_back(calibrationData[i].qc0);
338
            qc0.push_back(calibrationData[i].qc0);
337
 
339
 
338
        if(!calibrationData[i].qc1.empty())
340
        if(!calibrationData[i].qc1.empty())
339
            qc1.push_back(calibrationData[i].qc1);
341
            qc1.push_back(calibrationData[i].qc1);
340
 
342
 
341
        if(!calibrationData[i].qc0.empty() && !calibrationData[i].qc1.empty()){
343
        if(!calibrationData[i].qc0.empty() && !calibrationData[i].qc1.empty()){
342
            qc0Stereo.push_back(calibrationData[i].qc0);
344
            qc0Stereo.push_back(calibrationData[i].qc0);
343
            qc1Stereo.push_back(calibrationData[i].qc1);
345
            qc1Stereo.push_back(calibrationData[i].qc1);
344
        }
346
        }
345
    }
347
    }
346
 
348
 
347
    // Generate world object coordinates [mm]
349
    // Generate world object coordinates [mm]
348
    std::vector<cv::Point3f> Qi = generateWorldCoords(checkerCount, settings.value("calibration/squareSize", 10.0).toFloat());
350
    std::vector<cv::Point3f> Qi = generateWorldCoords(checkerCount, settings.value("calibration/squareSize", 10.0).toFloat());
349
 
351
 
350
    std::vector< std::vector<cv::Point3f> > Q0(qc0.size(), Qi), Q1(qc1.size(), Qi), QStereo(qc0Stereo.size(), Qi);
352
    std::vector< std::vector<cv::Point3f> > Q0(qc0.size(), Qi), Q1(qc1.size(), Qi), QStereo(qc0Stereo.size(), Qi);
351
 
353
 
352
    // Calibrate the cameras
354
    // Calibrate the cameras
353
    SMCalibrationParameters cal;
355
    SMCalibrationParameters cal;
354
    cal.frameWidth = calibrationData[0].frame0.cols;
356
    cal.frameWidth = calibrationData[0].frame0.cols;
355
    cal.frameHeight = calibrationData[0].frame0.rows;
357
    cal.frameHeight = calibrationData[0].frame0.rows;
356
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
358
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
357
 
359
 
358
    // determine only k1, k2 for lens distortion
360
    // determine only k1, k2 for lens distortion
359
    int flags = cv::CALIB_FIX_ASPECT_RATIO + cv::CALIB_FIX_K2 + cv::CALIB_FIX_K3 + cv::CALIB_ZERO_TANGENT_DIST + cv::CALIB_FIX_PRINCIPAL_POINT;
361
    int flags = cv::CALIB_FIX_ASPECT_RATIO + cv::CALIB_FIX_K2 + cv::CALIB_FIX_K3 + cv::CALIB_ZERO_TANGENT_DIST + cv::CALIB_FIX_PRINCIPAL_POINT;
360
 
362
 
361
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
363
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
362
 
364
 
363
    cal.cam0_error = cv::calibrateCamera(Q0, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, cal.cam0_intrinsic_std, cal.cam0_extrinsic_std, cal.cam0_errors_per_view, flags,
365
    cal.cam0_error = cv::calibrateCamera(Q0, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, cal.cam0_intrinsic_std, cal.cam0_extrinsic_std, cal.cam0_errors_per_view, flags,
364
                                         cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, DBL_EPSILON));
366
                                         cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, DBL_EPSILON));
365
 
367
 
366
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
368
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
367
    cal.cam1_error = cv::calibrateCamera(Q1, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, cal.cam1_intrinsic_std, cal.cam1_extrinsic_std, cal.cam1_errors_per_view, flags,
369
    cal.cam1_error = cv::calibrateCamera(Q1, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, cal.cam1_intrinsic_std, cal.cam1_extrinsic_std, cal.cam1_errors_per_view, flags,
368
                                         cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, DBL_EPSILON));
370
                                         cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, DBL_EPSILON));
369
 
371
 
370
    // Stereo calibration
372
    // Stereo calibration
371
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;// + cv::CALIB_FIX_K2 + cv::CALIB_FIX_K3 + cv::CALIB_ZERO_TANGENT_DIST + cv::CALIB_FIX_PRINCIPAL_POINT + cv::CALIB_FIX_ASPECT_RATIO;
373
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;// + cv::CALIB_FIX_K2 + cv::CALIB_FIX_K3 + cv::CALIB_ZERO_TANGENT_DIST + cv::CALIB_FIX_PRINCIPAL_POINT + cv::CALIB_FIX_ASPECT_RATIO;
372
    cv::Mat E, F, R1, T1;
374
    cv::Mat E, F, R1, T1;
373
 
375
 
374
    #if CV_MAJOR_VERSION < 3
376
    #if CV_MAJOR_VERSION < 3
375
        cal.stereo_error = cv::stereoCalibrate(QStereo, qc0Stereo, qc1Stereo, cal.K0, cal.k0, cal.K1, cal.k1,
377
        cal.stereo_error = cv::stereoCalibrate(QStereo, qc0Stereo, qc1Stereo, cal.K0, cal.k0, cal.K1, cal.k1,
376
                                               frameSize, R1, T1, E, F,
378
                                               frameSize, R1, T1, E, F,
377
                                               cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, DBL_EPSILON),
379
                                               cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, DBL_EPSILON),
378
                                               flags_stereo);
380
                                               flags_stereo);
379
    #else
381
    #else
380
        cal.stereo_error = cv::stereoCalibrate(QStereo, qc0Stereo, qc1Stereo, cal.K0, cal.k0, cal.K1, cal.k1,
382
        cal.stereo_error = cv::stereoCalibrate(QStereo, qc0Stereo, qc1Stereo, cal.K0, cal.k0, cal.K1, cal.k1,
381
                                               frameSize, R1, T1, E, F, flags_stereo,
383
                                               frameSize, R1, T1, E, F, flags_stereo,
382
                                               cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, DBL_EPSILON));
384
                                               cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, DBL_EPSILON));
383
    #endif
385
    #endif
384
 
386
 
385
    cal.R1 = R1;
387
    cal.R1 = R1;
386
    cal.T1 = T1;
388
    cal.T1 = T1;
387
    cal.E = E;
389
    cal.E = E;
388
    cal.F = F;
390
    cal.F = F;
389
 
391
 
390
    // Print to log
392
    // Print to log
391
    std::stringstream out;
393
    std::stringstream out;
392
    out << "## Camera Calibration ##" << std::endl
394
    out << "## Camera Calibration ##" << std::endl
393
        << "No. images used for intrinsics of cam0: " << qc0.size() << std::endl
395
        << "No. images used for intrinsics of cam0: " << qc0.size() << std::endl
394
        << "No. images used for intrinsics of cam1: " << qc1.size() << std::endl
396
        << "No. images used for intrinsics of cam1: " << qc1.size() << std::endl
395
        << "No. images used for stereo calibration: " << qc0Stereo.size() << std::endl;
397
        << "No. images used for stereo calibration: " << qc0Stereo.size() << std::endl;
396
    cal.printCamera(out);
398
    cal.printCamera(out);
397
    out << std::endl << std::endl;
399
    out << std::endl << std::endl;
398
    emit logMessage(QString::fromStdString(out.str()));
400
    emit logMessage(QString::fromStdString(out.str()));
399
 
401
 
400
    // save to (reentrant) qsettings object
402
    // save to (reentrant) qsettings object
401
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
403
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
402
 
404
 
403
    emit done();
405
    emit done();
404
}
406
}
-
 
407
 
-
 
408
static void drawDetectedMarkersCharuco(cv::InputOutputArray _image, cv::InputArrayOfArrays _corners,
-
 
409
                                cv::InputArray _ids, cv::Scalar borderColor) {
-
 
410
 
-
 
411
    using namespace cv;
-
 
412
    using namespace std;
-
 
413
 
-
 
414
    CV_Assert(_image.getMat().total() != 0 &&
-
 
415
              (_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
-
 
416
    CV_Assert((_corners.total() == _ids.total()) || _ids.total() == 0);
-
 
417
 
-
 
418
    // calculate colors
-
 
419
    Scalar textColor, cornerColor;
-
 
420
    textColor = cornerColor = borderColor;
-
 
421
    swap(textColor.val[0], textColor.val[1]);     // text color just sawp G and R
-
 
422
    swap(cornerColor.val[1], cornerColor.val[2]); // corner color just sawp G and B
-
 
423
 
-
 
424
    int nMarkers = (int)_corners.total();
-
 
425
    for(int i = 0; i < nMarkers; i++) {
-
 
426
        Mat currentMarker = _corners.getMat(i);
-
 
427
        CV_Assert(currentMarker.total() == 4 && currentMarker.type() == CV_32FC2);
-
 
428
 
-
 
429
        // draw marker sides
-
 
430
        for(int j = 0; j < 4; j++) {
-
 
431
            Point2f p0, p1;
-
 
432
            p0 = currentMarker.ptr< Point2f >(0)[j];
-
 
433
            p1 = currentMarker.ptr< Point2f >(0)[(j + 1) % 4];
-
 
434
            line(_image, p0, p1, borderColor, 2, LINE_AA);
-
 
435
        }
-
 
436
        // draw first corner mark
-
 
437
        rectangle(_image, currentMarker.ptr< Point2f >(0)[0] - Point2f(3, 3),
-
 
438
                  currentMarker.ptr< Point2f >(0)[0] + Point2f(3, 3), cornerColor, 1, LINE_AA);
-
 
439
 
-
 
440
        // draw ID
-
 
441
        if(_ids.total() != 0) {
-
 
442
            Point2f cent(0, 0);
-
 
443
            for(int p = 0; p < 4; p++)
-
 
444
                cent += currentMarker.ptr< Point2f >(0)[p];
-
 
445
            cent = cent / 4.;
-
 
446
            stringstream s;
-
 
447
            s << _ids.getMat().ptr< int >(0)[i];
-
 
448
            putText(_image, s.str(), cent, FONT_HERSHEY_SIMPLEX, 1, textColor, 2, LINE_AA);
-
 
449
        }
-
 
450
    }
-
 
451
}
-
 
452
 
-
 
453
static void drawDetectedCornersCharuco(cv::InputOutputArray _image, cv::InputArray _charucoCorners,
-
 
454
                                       cv::InputArray _charucoIds, cv::Scalar cornerColor) {
-
 
455
 
-
 
456
    using namespace cv;
-
 
457
    using namespace std;
-
 
458
 
-
 
459
    CV_Assert(_image.getMat().total() != 0 &&
-
 
460
              (_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
-
 
461
    CV_Assert((_charucoCorners.getMat().total() == _charucoIds.getMat().total()) ||
-
 
462
              _charucoIds.getMat().total() == 0);
-
 
463
 
-
 
464
    unsigned int nCorners = (unsigned int)_charucoCorners.getMat().total();
-
 
465
    for(unsigned int i = 0; i < nCorners; i++) {
-
 
466
        Point2f corner = _charucoCorners.getMat().at< Point2f >(i);
-
 
467
 
-
 
468
        // draw first corner mark
-
 
469
        rectangle(_image, corner - Point2f(3, 3), corner + Point2f(3, 3), cornerColor, 2, LINE_AA);
-
 
470
 
-
 
471
        // draw ID
-
 
472
        if(_charucoIds.total() != 0) {
-
 
473
            int id = _charucoIds.getMat().at< int >(i);
-
 
474
            stringstream s;
-
 
475
            s << id;
-
 
476
            putText(_image, s.str(), corner + Point2f(5, -5), FONT_HERSHEY_SIMPLEX, 1.0,
-
 
477
                    cornerColor, 4, cv::LINE_AA);
-
 
478
        }
-
 
479
    }
-
 
480
}
-
 
481
 
-
 
482
void SMCalibrationWorker::cameraCalibrationCharuco(std::vector<SMCalibrationSet> calibrationData){
-
 
483
 
-
 
484
    QSettings settings;
-
 
485
 
-
 
486
    // Number of saddle points on calibration pattern
-
 
487
    cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(), settings.value("calibration/patternSizeY", 13).toInt()));
-
 
488
    const float checkerSize = settings.value("calibration/squareSize", 10.0).toFloat();
-
 
489
    float markerLength = 0.8*checkerSize;
-
 
490
 
-
 
491
    unsigned int nSets = calibrationData.size();
-
 
492
 
-
 
493
    // 2D Points collected for OpenCV's calibration procedures
-
 
494
    std::vector< std::vector<cv::Point2f> > qc0, qc1;
-
 
495
    std::vector< std::vector<cv::Point2f> > qc0Stereo, qc1Stereo;
-
 
496
 
-
 
497
    // 3D object points
-
 
498
    std::vector< std::vector<cv::Point3f> > Q0, Q1, QStereo;
-
 
499
 
-
 
500
    // Charuco board and dictionary
-
 
501
    cv::Ptr<cv::aruco::Dictionary> dict = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
-
 
502
 
-
 
503
//    // The dictionary from the standalone Aruco library used to generate the original chessboards
-
 
504
//    std::vector<uint64_t> ARUCO_MIP_36h12 = {0xd2b63a09dUL,0x6001134e5UL,0x1206fbe72UL,0xff8ad6cb4UL,0x85da9bc49UL,0xb461afe9cUL,0x6db51fe13UL,0x5248c541fUL,0x8f34503UL,0x8ea462eceUL,0xeac2be76dUL,0x1af615c44UL,0xb48a49f27UL,0x2e4e1283bUL,0x78b1f2fa8UL,0x27d34f57eUL,0x89222fff1UL,0x4c1669406UL,0xbf49b3511UL,0xdc191cd5dUL,0x11d7c3f85UL,0x16a130e35UL,0xe29f27effUL,0x428d8ae0cUL,0x90d548477UL,0x2319cbc93UL,0xc3b0c3dfcUL,0x424bccc9UL,0x2a081d630UL,0x762743d96UL,0xd0645bf19UL,0xf38d7fd60UL,0xc6cbf9a10UL,0x3c1be7c65UL,0x276f75e63UL,0x4490a3f63UL,0xda60acd52UL,0x3cc68df59UL,0xab46f9daeUL,0x88d533d78UL,0xb6d62ec21UL,0xb3c02b646UL,0x22e56d408UL,0xac5f5770aUL,0xaaa993f66UL,0x4caa07c8dUL,0x5c9b4f7b0UL,0xaa9ef0e05UL,0x705c5750UL,0xac81f545eUL,0x735b91e74UL,0x8cc35cee4UL,0xe44694d04UL,0xb5e121de0UL,0x261017d0fUL,0xf1d439eb5UL,0xa1a33ac96UL,0x174c62c02UL,0x1ee27f716UL,0x8b1c5ece9UL,0x6a05b0c6aUL,0xd0568dfcUL,0x192d25e5fUL,0x1adbeccc8UL,0xcfec87f00UL,0xd0b9dde7aUL,0x88dcef81eUL,0x445681cb9UL,0xdbb2ffc83UL,0xa48d96df1UL,0xb72cc2e7dUL,0xc295b53fUL,0xf49832704UL,0x9968edc29UL,0x9e4e1af85UL,0x8683e2d1bUL,0x810b45c04UL,0x6ac44bfe2UL,0x645346615UL,0x3990bd598UL,0x1c9ed0f6aUL,0xc26729d65UL,0x83993f795UL,0x3ac05ac5dUL,0x357adff3bUL,0xd5c05565UL,0x2f547ef44UL,0x86c115041UL,0x640fd9e5fUL,0xce08bbcf7UL,0x109bb343eUL,0xc21435c92UL,0x35b4dfce4UL,0x459752cf2UL,0xec915b82cUL,0x51881eed0UL,0x2dda7dc97UL,0x2e0142144UL,0x42e890f99UL,0x9a8856527UL,0x8e80d9d80UL,0x891cbcf34UL,0x25dd82410UL,0x239551d34UL,0x8fe8f0c70UL,0x94106a970UL,0x82609b40cUL,0xfc9caf36UL,0x688181d11UL,0x718613c08UL,0xf1ab7629UL,0xa357bfc18UL,0x4c03b7a46UL,0x204dedce6UL,0xad6300d37UL,0x84cc4cd09UL,0x42160e5c4UL,0x87d2adfa8UL,0x7850e7749UL,0x4e750fc7cUL,0xbf2e5dfdaUL,0xd88324da5UL,0x234b52f80UL,0x378204514UL,0xabdf2ad53UL,0x365e78ef9UL,0x49caa6ca2UL,0x3c39ddf3UL,0xc68c5385dUL,0x5bfcbbf67UL,0x623241e21UL,0xabc90d5ccUL,0x388c6fe85UL,0xda0e2d62dUL,0x10855dfe9UL,0x4d46efd6bUL,0x76ea12d61UL,0x9db377d3dUL,0xeed0efa71UL,0xe6ec3ae2fUL,0x441faee83UL,0xba19c8ff5UL,0x313035eabUL,0x6ce8f7625UL,0x880dab58dUL,0x8d3409e0dUL,0x2be92ee21UL,0xd60302c6cUL,0x469ffc724UL,0x87eebeed3UL,0x42587ef7aUL,0x7a8cc4e52UL,0x76a437650UL,0x999e41ef4UL,0x7d0969e42UL,0xc02baf46bUL,0x9259f3e47UL,0x2116a1dc0UL,0x9f2de4d84UL,0xeffac29UL,0x7b371ff8cUL,0x668339da9UL,0xd010aee3fUL,0x1cd00b4c0UL,0x95070fc3bUL,0xf84c9a770UL,0x38f863d76UL,0x3646ff045UL,0xce1b96412UL,0x7a5d45da8UL,0x14e00ef6cUL,0x5e95abfd8UL,0xb2e9cb729UL,0x36c47dd7UL,0xb8ee97c6bUL,0xe9e8f657UL,0xd4ad2ef1aUL,0x8811c7f32UL,0x47bde7c31UL,0x3adadfb64UL,0x6e5b28574UL,0x33e67cd91UL,0x2ab9fdd2dUL,0x8afa67f2bUL,0xe6a28fc5eUL,0x72049cdbdUL,0xae65dac12UL,0x1251a4526UL,0x1089ab841UL,0xe2f096ee0UL,0xb0caee573UL,0xfd6677e86UL,0x444b3f518UL,0xbe8b3a56aUL,0x680a75cfcUL,0xac02baea8UL,0x97d815e1cUL,0x1d4386e08UL,0x1a14f5b0eUL,0xe658a8d81UL,0xa3868efa7UL,0x3668a9673UL,0xe8fc53d85UL,0x2e2b7edd5UL,0x8b2470f13UL,0xf69795f32UL,0x4589ffc8eUL,0x2e2080c9cUL,0x64265f7dUL,0x3d714dd10UL,0x1692c6ef1UL,0x3e67f2f49UL,0x5041dad63UL,0x1a1503415UL,0x64c18c742UL,0xa72eec35UL,0x1f0f9dc60UL,0xa9559bc67UL,0xf32911d0dUL,0x21c0d4ffcUL,0xe01cef5b0UL,0x4e23a3520UL,0xaa4f04e49UL,0xe1c4fcc43UL,0x208e8f6e8UL,0x8486774a5UL,0x9e98c7558UL,0x2c59fb7dcUL,0x9446a4613UL,0x8292dcc2eUL,0x4d61631UL,0xd05527809UL,0xa0163852dUL,0x8f657f639UL,0xcca6c3e37UL,0xcb136bc7aUL,0xfc5a83e53UL,0x9aa44fc30UL,0xbdec1bd3cUL,0xe020b9f7cUL,0x4b8f35fb0UL,0xb8165f637UL,0x33dc88d69UL,0x10a2f7e4dUL,0xc8cb5ff53UL,0xde259ff6bUL,0x46d070dd4UL,0x32d3b9741UL,0x7075f1c04UL,0x4d58dbea0UL};
-
 
505
//    int tau_MIP_3612 = 12;
-
 
506
 
-
 
507
//    // shuffle according to aruco_create_markermap code
-
 
508
//    std::srand(0);
-
 
509
//    std::random_shuffle(ARUCO_MIP_36h12.begin(),ARUCO_MIP_36h12.end());
-
 
510
 
-
 
511
//    cv::Mat bytesList(250, 5, CV_8UC4);
-
 
512
//    for(int i=0; i<250; i++){
-
 
513
//        cv::Mat bits(6, 6, CV_8UC1);
-
 
514
//        for(int b=0; b<36; b++){
-
 
515
//            bits.at<char>(b) = getBit(ARUCO_MIP_36h12[i], b+1);
-
 
516
//        }
-
 
517
//        //std::cout << bits << std::endl;
-
 
518
//        cv::Mat bytes = cv::aruco::Dictionary::getByteListFromBits(bits);
-
 
519
//        bytes.copyTo(bytesList.row(i));
-
 
520
//    }
-
 
521
//    cv::Ptr<cv::aruco::Dictionary> dict = cv::makePtr<cv::aruco::Dictionary>(new cv::aruco::Dictionary(bytesList, 6, (tau_MIP_3612-1)/2));
-
 
522
 
-
 
523
 
-
 
524
//    for(int i=0; i<250; i++){
-
 
525
//        cv::Mat img;
-
 
526
//        dict->drawMarker(i, 100, img, 1);
-
 
527
//        cv::imwrite(QString("id%1.png").arg(i).toStdString(), img);
-
 
528
//    }
-
 
529
 
-
 
530
    cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(checkerCount.width+1, checkerCount.height+1, checkerSize, markerLength, dict);
-
 
531
 
-
 
532
//    cv::Mat boardImg;
-
 
533
//    board->draw(cv::Size((saddlePointCountX+1)*100, (saddlePointCountY+1)*100), boardImg, 0, 1);
-
 
534
//    cv::Mat boardImgRes;
-
 
535
//    cv::resize(boardImg, boardImgRes, cv::Size((saddlePointCountX+1)*10, (saddlePointCountY+1)*10), 0, 0, cv::INTER_NEAREST);
-
 
536
//    cv::imwrite("boardImg.png", boardImg);
-
 
537
//    cv::imwrite("boardImgRes.png", boardImgRes);
-
 
538
 
-
 
539
    cv::Ptr<cv::aruco::DetectorParameters> parameters = cv::aruco::DetectorParameters::create();
-
 
540
    parameters->adaptiveThreshWinSizeMin = 3;
-
 
541
    parameters->adaptiveThreshWinSizeMax = 153;
-
 
542
    parameters->adaptiveThreshWinSizeStep = 3;
-
 
543
//    parameters->adaptiveThreshConstant = 20;
-
 
544
//    parameters->minMarkerPerimeterRate = 0.01;
-
 
545
    parameters->maxMarkerPerimeterRate = 5.0;
-
 
546
//    parameters->minCornerDistanceRate = 0.10;
-
 
547
//    parameters->perspectiveRemovePixelPerCell = 6;
-
 
548
//    parameters->maxErroneousBitsInBorderRate = 0.8;
-
 
549
//    parameters->minOtsuStdDev = 1;
-
 
550
//    parameters->errorCorrectionRate = 0.1;
-
 
551
 
-
 
552
    // Loop through calibration sets
-
 
553
    for(unsigned int i=0; i<nSets; i++){
-
 
554
 
-
 
555
        SMCalibrationSet calibrationSetI = calibrationData[i];
-
 
556
 
-
 
557
        if(!calibrationSetI.selected)
-
 
558
            continue;
-
 
559
 
-
 
560
        // Camera 0
-
 
561
        std::vector<std::vector<cv::Point2f>> mc0, rejecti0;
-
 
562
        std::vector<int> mi0;
-
 
563
 
-
 
564
        cv::Mat gray0;
-
 
565
        cv::cvtColor(calibrationSetI.frame0, gray0, CV_BayerBG2GRAY);
-
 
566
 
-
 
567
        // Extract checker corners
-
 
568
        cv::aruco::detectMarkers(gray0, dict, mc0, mi0, parameters);
-
 
569
        cv::aruco::refineDetectedMarkers(gray0, board, mc0, mi0, rejecti0);
-
 
570
 
-
 
571
        cv::Mat cci0, cidsi0;
-
 
572
        cv::aruco::interpolateCornersCharuco(mc0, mi0, gray0, board, cci0, cidsi0);
-
 
573
 
-
 
574
        bool success0 = (cci0.rows >= 4);
-
 
575
        if(success0){
-
 
576
            cv::Mat color0;
-
 
577
            cv::cvtColor(calibrationSetI.frame0, color0, CV_BayerBG2RGB);
-
 
578
 
-
 
579
            // Draw colored chessboard
-
 
580
            drawDetectedMarkersCharuco(color0, mc0, mi0, cv::Scalar(0, 255, 0));
-
 
581
            drawDetectedCornersCharuco(color0, cci0, cidsi0, cv::Scalar(0, 255, 0));
-
 
582
 
-
 
583
            calibrationSetI.frame0Result = color0;
-
 
584
        } else {
-
 
585
            std::cerr << "Could not detect Charuco in camera 0, id " << calibrationSetI.id << std::endl;
-
 
586
        }
-
 
587
 
-
 
588
 
-
 
589
        // Camera 1
-
 
590
        std::vector<std::vector<cv::Point2f>> mc1, rejecti1;
-
 
591
        std::vector<int> mi1;
-
 
592
 
-
 
593
        cv::Mat gray1;
-
 
594
        cv::cvtColor(calibrationSetI.frame1, gray1, CV_BayerBG2GRAY);
-
 
595
 
-
 
596
        // Extract checker corners
-
 
597
        cv::aruco::detectMarkers(gray1, dict, mc1, mi1, parameters);
-
 
598
        cv::aruco::refineDetectedMarkers(gray1, board, mc1, mi1, rejecti1);
-
 
599
 
-
 
600
        cv::Mat cci1, cidsi1;
-
 
601
        cv::aruco::interpolateCornersCharuco(mc1, mi1, gray1, board, cci1, cidsi1);
-
 
602
 
-
 
603
        bool success1 = (cci1.rows >= 4);
-
 
604
        if(success1){
-
 
605
            cv::Mat color1;
-
 
606
            cv::cvtColor(calibrationSetI.frame1, color1, CV_BayerBG2RGB);
-
 
607
 
-
 
608
            // Draw colored chessboard
-
 
609
            drawDetectedMarkersCharuco(color1, mc1, mi1, cv::Scalar(0, 255, 0));
-
 
610
            drawDetectedCornersCharuco(color1, cci1, cidsi1, cv::Scalar(0, 255, 0));
-
 
611
 
-
 
612
            calibrationSetI.frame1Result = color1;
-
 
613
        } else {
-
 
614
            std::cerr << "Could not detect Charuco in camera 1, id " << calibrationSetI.id << std::endl;
-
 
615
        }
-
 
616
 
-
 
617
        emit newCheckerboardResult(calibrationSetI.id, calibrationSetI);
-
 
618
 
-
 
619
        if(success0){
-
 
620
            std::vector<cv::Point2f> qc0i;
-
 
621
            std::vector<cv::Point3f> Q0i;
-
 
622
            for(int j=0; j<cci0.rows; j++){
-
 
623
                qc0i.push_back(cci0.at<cv::Point2f>(j));
-
 
624
                int id = cidsi0.at<int>(j);
-
 
625
                Q0i.push_back(board->chessboardCorners[id]);
-
 
626
            }
-
 
627
 
-
 
628
            qc0.push_back(qc0i);
-
 
629
            Q0.push_back(Q0i);
-
 
630
        }
-
 
631
 
-
 
632
        if(success1){
-
 
633
            std::vector<cv::Point2f> qc1i;
-
 
634
            std::vector<cv::Point3f> Q1i;
-
 
635
            for(int j=0; j<cci1.rows; j++){
-
 
636
                qc1i.push_back(cci1.at<cv::Point2f>(j));
-
 
637
                int id = cidsi1.at<int>(j);
-
 
638
                Q1i.push_back(board->chessboardCorners[id]);
-
 
639
            }
-
 
640
 
-
 
641
            qc1.push_back(qc1i);
-
 
642
            Q1.push_back(Q1i);
-
 
643
        }
-
 
644
 
-
 
645
        if(success0 && success1){
-
 
646
 
-
 
647
            std::vector<cv::Point2f> qc0iStereo, qc1iStereo;
-
 
648
            std::vector<cv::Point3f> QiStereo;
-
 
649
 
-
 
650
            int j0 = 0;
-
 
651
            int j1 = 0;
-
 
652
            while(j0<cci0.rows && j1<cci1.rows){
-
 
653
 
-
 
654
                int id0 = cidsi0.at<int>(j0);
-
 
655
                int id1 = cidsi1.at<int>(j1);
-
 
656
 
-
 
657
                if(id0 < id1)
-
 
658
                    j0++;
-
 
659
                else if (id1 < id0)
-
 
660
                    j1++;
-
 
661
                else{
-
 
662
                    assert(id0 == id1);
-
 
663
                    qc0iStereo.push_back(cci0.at<cv::Point2f>(j0));
-
 
664
                    qc1iStereo.push_back(cci1.at<cv::Point2f>(j1));
-
 
665
                    QiStereo.push_back(board->chessboardCorners[id0]);
-
 
666
                    j0++;
-
 
667
                    j1++;
-
 
668
                }
-
 
669
 
-
 
670
            }
-
 
671
 
-
 
672
            if(QiStereo.size() > 0){
-
 
673
                qc0Stereo.push_back(qc0iStereo);
-
 
674
                qc1Stereo.push_back(qc1iStereo);
-
 
675
                QStereo.push_back(QiStereo);
-
 
676
            }
-
 
677
        }
-
 
678
 
-
 
679
    }
-
 
680
 
-
 
681
    size_t nValidSets = qc0Stereo.size();
-
 
682
    if(nValidSets < 2){
-
 
683
        std::cerr << "Not enough valid calibration sequences!" << std::endl;
-
 
684
        emit done();
-
 
685
        return;
-
 
686
    }
-
 
687
 
-
 
688
 
-
 
689
    // calibrate the cameras
-
 
690
    SMCalibrationParameters cal;
-
 
691
    cal.frameWidth = calibrationData[0].frame0.cols;
-
 
692
    cal.frameHeight = calibrationData[0].frame0.rows;
-
 
693
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
-
 
694
 
-
 
695
    // determine only k1, k2 for lens distortion
-
 
696
    int flags = cv::CALIB_FIX_ASPECT_RATIO + cv::CALIB_FIX_K2 + cv::CALIB_FIX_K3 + cv::CALIB_ZERO_TANGENT_DIST + cv::CALIB_FIX_PRINCIPAL_POINT;
-
 
697
 
-
 
698
    // Note: several of the output arguments below must be cv::Mat, otherwise segfault
-
 
699
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
-
 
700
    cal.cam0_error = cv::calibrateCamera(Q0, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, cal.cam0_intrinsic_std, cal.cam0_extrinsic_std, cal.cam0_errors_per_view, flags,
-
 
701
                                         cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, DBL_EPSILON));
-
 
702
 
-
 
703
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
-
 
704
    cal.cam1_error = cv::calibrateCamera(Q1, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, cal.cam1_intrinsic_std, cal.cam1_extrinsic_std, cal.cam1_errors_per_view, flags,
-
 
705
                                         cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, DBL_EPSILON));
-
 
706
 
-
 
707
    // stereo calibration
-
 
708
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;// + cv::CALIB_FIX_K2 + cv::CALIB_FIX_K3 + cv::CALIB_ZERO_TANGENT_DIST + cv::CALIB_FIX_PRINCIPAL_POINT + cv::CALIB_FIX_ASPECT_RATIO;
-
 
709
    cv::Mat E, F, R1, T1;
-
 
710
 
-
 
711
    #if CV_MAJOR_VERSION < 3
-
 
712
        cal.stereo_error = cv::stereoCalibrate(QStereo, qc0Stereo, qc1Stereo, cal.K0, cal.k0, cal.K1, cal.k1,
-
 
713
                                               frameSize, R1, T1, E, F,
-
 
714
                                               cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, DBL_EPSILON),
-
 
715
                                               flags_stereo);
-
 
716
    #else
-
 
717
        cal.stereo_error = cv::stereoCalibrate(QStereo, qc0Stereo, qc1Stereo, cal.K0, cal.k0, cal.K1, cal.k1,
-
 
718
                                               frameSize, R1, T1, E, F, flags_stereo,
-
 
719
                                               cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, DBL_EPSILON));
-
 
720
    #endif
-
 
721
 
-
 
722
    cal.R1 = R1;
-
 
723
    cal.T1 = T1;
-
 
724
    cal.E = E;
-
 
725
    cal.F = F;
-
 
726
 
-
 
727
    // Print to log
-
 
728
    std::stringstream out;
-
 
729
    out << "## Camera Calibration ##" << std::endl
-
 
730
        << "No. images used for intrinsics of cam0: " << qc0.size() << std::endl
-
 
731
        << "No. images used for intrinsics of cam1: " << qc1.size() << std::endl
-
 
732
        << "No. images used for stereo calibration: " << qc0Stereo.size() << std::endl;
-
 
733
    cal.printCamera(out);
-
 
734
    out << std::endl << std::endl;
-
 
735
    emit logMessage(QString::fromStdString(out.str()));
-
 
736
 
-
 
737
    // save to (reentrant qsettings object)
-
 
738
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
-
 
739
 
-
 
740
    emit done();
-
 
741
 
-
 
742
}
405
 
743
 
406
 
744
 
407
void SMCalibrationWorker::rotationStageCalibration(std::vector<SMCalibrationSet> calibrationData){
745
void SMCalibrationWorker::rotationStageCalibration(std::vector<SMCalibrationSet> calibrationData){
408
 
746
 
409
    int nSets = calibrationData.size();
747
    int nSets = calibrationData.size();
410
 
748
 
411
    std::vector< std::vector<cv::Point2f> > qc0Stereo, qc1Stereo;
749
    std::vector< std::vector<cv::Point2f> > qc0Stereo, qc1Stereo;
412
    for(int i=0; i<nSets; i++){
750
    for(int i=0; i<nSets; i++){
413
 
751
 
414
        if(!calibrationData[i].selected)
752
        if(!calibrationData[i].selected)
415
            continue;
753
            continue;
416
 
754
 
417
        // Note: avoiding push_back has only minor theoretical value
755
        // Note: avoiding push_back has only minor theoretical value
418
        if(!calibrationData[i].qc0.empty() && !calibrationData[i].qc1.empty()){
756
        if(!calibrationData[i].qc0.empty() && !calibrationData[i].qc1.empty()){
419
            qc0Stereo.push_back(calibrationData[i].qc0);
757
            qc0Stereo.push_back(calibrationData[i].qc0);
420
            qc1Stereo.push_back(calibrationData[i].qc1);
758
            qc1Stereo.push_back(calibrationData[i].qc1);
421
        }
759
        }
422
    }
760
    }
423
 
761
 
424
    QSettings settings;
762
    QSettings settings;
425
    SMCalibrationParameters cal = settings.value("calibration/parameters").value<SMCalibrationParameters>();
763
    SMCalibrationParameters cal = settings.value("calibration/parameters").value<SMCalibrationParameters>();
426
 
764
 
427
    if(qc0Stereo.size() > 2){
765
    if(qc0Stereo.size() > 2){
428
        // Generate world object coordinates [mm]
766
        // Generate world object coordinates [mm]
429
        const cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(),settings.value("calibration/patternSizeY", 13).toInt()));
767
        const cv::Size checkerCount(cv::Size(settings.value("calibration/patternSizeX", 22).toInt(),settings.value("calibration/patternSizeY", 13).toInt()));
430
        const float checkerSize = settings.value("calibration/squareSize", 10.0).toFloat();
768
        const float checkerSize = settings.value("calibration/squareSize", 10.0).toFloat();
431
        std::vector<cv::Point3f> Qi = generateWorldCoords(checkerCount, checkerSize);
769
        std::vector<cv::Point3f> Qi = generateWorldCoords(checkerCount, checkerSize);
432
 
770
 
433
        // Direct rotation axis calibration //
771
        // Direct rotation axis calibration //
434
        // full camera matrices
772
        // full camera matrices
435
        cv::Matx34f P0 = cv::Matx34f::eye();
773
        cv::Matx34f P0 = cv::Matx34f::eye();
436
        cv::Mat RT1(3, 4, CV_32F);
774
        cv::Mat RT1(3, 4, CV_32F);
437
        cv::Mat(cal.R1).copyTo(RT1(cv::Range(0, 3), cv::Range(0, 3)));
775
        cv::Mat(cal.R1).copyTo(RT1(cv::Range(0, 3), cv::Range(0, 3)));
438
        cv::Mat(cal.T1).copyTo(RT1(cv::Range(0, 3), cv::Range(3, 4)));
776
        cv::Mat(cal.T1).copyTo(RT1(cv::Range(0, 3), cv::Range(3, 4)));
439
        cv::Matx34f P1 = cv::Matx34f(RT1);
777
        cv::Matx34f P1 = cv::Matx34f(RT1);
440
 
778
 
441
        // calibration points in camera 0 frame
779
        // calibration points in camera 0 frame
442
        std::vector< std::vector<cv::Point3f> > Qcam(qc0Stereo.size());
780
        std::vector< std::vector<cv::Point3f> > Qcam(qc0Stereo.size());
443
 
781
 
444
        #pragma omp parallel for
782
        #pragma omp parallel for
445
        for(unsigned int i=0; i<qc0Stereo.size(); i++){
783
        for(unsigned int i=0; i<qc0Stereo.size(); i++){
446
            std::vector<cv::Point2f> qc0i, qc1i;
784
            std::vector<cv::Point2f> qc0i, qc1i;
447
 
785
 
448
            cv::undistortPoints(qc0Stereo[i], qc0i, cal.K0, cal.k0);
786
            cv::undistortPoints(qc0Stereo[i], qc0i, cal.K0, cal.k0);
449
            cv::undistortPoints(qc1Stereo[i], qc1i, cal.K1, cal.k1);
787
            cv::undistortPoints(qc1Stereo[i], qc1i, cal.K1, cal.k1);
450
 
788
 
451
            cv::Mat Qhom, Qcami;
789
            cv::Mat Qhom, Qcami;
452
            cv::triangulatePoints(P0, P1, qc0i, qc1i, Qhom);
790
            cv::triangulatePoints(P0, P1, qc0i, qc1i, Qhom);
453
            cvtools::convertMatFromHomogeneous(Qhom, Qcami);
791
            cvtools::convertMatFromHomogeneous(Qhom, Qcami);
454
            std::vector<cv::Point3f> QcamiPoints;
792
            std::vector<cv::Point3f> QcamiPoints;
455
            cvtools::matToPoints3f(Qcami, QcamiPoints);
793
            cvtools::matToPoints3f(Qcami, QcamiPoints);
456
 
794
 
457
            Qcam[i] = QcamiPoints;
795
            Qcam[i] = QcamiPoints;
458
        }
796
        }
459
 
797
 
460
        cv::Vec3f axis, point;
798
        cv::Vec3f axis, point;
461
        float rot_axis_error;
799
        float rot_axis_error;
462
        rotationAxisEstimation(Qcam, Qi, axis, point);
800
        rotationAxisEstimation(Qcam, Qi, axis, point);
463
        rotationAxisOptimization(Qcam, Qi, axis, point, rot_axis_error);
801
        rotationAxisOptimization(Qcam, Qi, axis, point, rot_axis_error);
464
 
802
 
465
        // construct transformation matrix
803
        // construct transformation matrix
466
        cv::Vec3f ex = axis.cross(cv::Vec3f(0,0,1.0));
804
        cv::Vec3f ex = axis.cross(cv::Vec3f(0,0,1.0));
467
        ex = cv::normalize(ex);
805
        ex = cv::normalize(ex);
468
        cv::Vec3f ez = ex.cross(axis);
806
        cv::Vec3f ez = ex.cross(axis);
469
        ez = cv::normalize(ez);
807
        ez = cv::normalize(ez);
470
 
808
 
471
        cv::Mat RrMat(3, 3, CV_32F);
809
        cv::Mat RrMat(3, 3, CV_32F);
472
        cv::Mat(ex).copyTo(RrMat.col(0));
810
        cv::Mat(ex).copyTo(RrMat.col(0));
473
        cv::Mat(axis).copyTo(RrMat.col(1));
811
        cv::Mat(axis).copyTo(RrMat.col(1));
474
        cv::Mat(ez).copyTo(RrMat.col(2));
812
        cv::Mat(ez).copyTo(RrMat.col(2));
475
 
813
 
476
        cal.Rr = cv::Matx33f(RrMat).t();
814
        cal.Rr = cv::Matx33f(RrMat).t();
477
        cal.Tr = -cv::Matx33f(RrMat).t()*point;
815
        cal.Tr = -cv::Matx33f(RrMat).t()*point;
478
        cal.rot_axis_error = rot_axis_error;
816
        cal.rot_axis_error = rot_axis_error;
479
    } else {
817
    } else {
480
        cal.Rr = cv::Matx33f::eye();
818
        cal.Rr = cv::Matx33f::eye();
481
        cal.Tr = cv::Vec3f(0,0,0);
819
        cal.Tr = cv::Vec3f(0,0,0);
482
        cal.rot_axis_error = -1;
820
        cal.rot_axis_error = -1;
483
        return;
821
        return;
484
    }
822
    }
485
 
823
 
486
    // Print to log
824
    // Print to log
487
    std::stringstream out;
825
    std::stringstream out;
488
    out << "## Rotation Stage Calibration ##" << std::endl
826
    out << "## Rotation Stage Calibration ##" << std::endl
489
        << "No. images used for calibration: " << qc0Stereo.size() << std::endl;
827
        << "No. images used for calibration: " << qc0Stereo.size() << std::endl;
490
    cal.printRotationStage(out);
828
    cal.printRotationStage(out);
491
    out << std::endl << std::endl;
829
    out << std::endl << std::endl;
492
    emit logMessage(QString::fromStdString(out.str()));
830
    emit logMessage(QString::fromStdString(out.str()));
493
 
831
 
494
    // Save to (reentrant) qsettings object
832
    // Save to (reentrant) qsettings object
495
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
833
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
496
 
834
 
497
    emit done();
835
    emit done();
498
}
836
}
499
 
837