Subversion Repositories seema-scanner

Rev

Rev 80 | Rev 84 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 80 Rev 81
1
#include "SMCalibrationWorker.h"
1
#include "SMCalibrationWorker.h"
2
#include "SMCalibrationParameters.h"
2
#include "SMCalibrationParameters.h"
3
 
3
 
4
#include "cvtools.h"
4
#include "cvtools.h"
5
 
5
 
6
#include <QSettings>
6
#include <QSettings>
7
 
7
 
8
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
8
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
9
 
9
 
10
    QSettings settings;
10
    QSettings settings;
11
 
11
 
12
    // Number of saddle points on calibration pattern
12
    // Number of saddle points on calibration pattern
13
    int checkerCountX = settings.value("calibration/checkerCountX", 22).toInt();
13
    int checkerCountX = settings.value("calibration/checkerCountX", 22).toInt();
14
    int checkerCountY = settings.value("calibration/checkerCountY", 13).toInt();
14
    int checkerCountY = settings.value("calibration/checkerCountY", 13).toInt();
15
    cv::Size checkerCount(checkerCountX, checkerCountY);
15
    cv::Size checkerCount(checkerCountX, checkerCountY);
16
 
16
 
17
    int nSets = calibrationData.size();
17
    int nSets = calibrationData.size();
18
 
18
 
19
    std::vector< std::vector<cv::Point2f> > qc0, qc1;
19
    std::vector< std::vector<cv::Point2f> > qc0, qc1;
20
    std::vector<float> angles;
20
    std::vector<float> angles;
21
 
21
 
22
    // Loop through calibration sets
22
    // Loop through calibration sets
23
    for(int i=0; i<nSets; i++){
23
    for(int i=0; i<nSets; i++){
24
 
24
 
25
        SMCalibrationSet SMCalibrationSetI = calibrationData[i];
25
        SMCalibrationSet SMCalibrationSetI = calibrationData[i];
26
 
26
 
27
        if(!SMCalibrationSetI.checked)
27
        if(!SMCalibrationSetI.checked)
28
            continue;
28
            continue;
29
 
29
 
30
        // Camera 0
30
        // Camera 0
31
        std::vector<cv::Point2f> qci0;
31
        std::vector<cv::Point2f> qci0;
32
        // Extract checker corners
32
        // Extract checker corners
33
        bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, checkerCount, qci0, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
33
        bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, checkerCount, qci0, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
34
        if(success0){
34
        if(success0){
35
            cv::Mat gray;
35
            cv::Mat gray;
36
            cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
36
            cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
37
            cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
37
            cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
38
            // Draw colored chessboard
38
            // Draw colored chessboard
39
            SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
39
            SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
40
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame0Result, checkerCount, qci0, success0, 10);
40
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame0Result, checkerCount, qci0, success0, 10);
41
        }
41
        }
42
 
42
 
43
        emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
43
        emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
44
 
44
 
45
        // Camera 1
45
        // Camera 1
46
        std::vector<cv::Point2f> qci1;
46
        std::vector<cv::Point2f> qci1;
47
        // Extract checker corners
47
        // Extract checker corners
48
        bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, checkerCount, qci1, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
48
        bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, checkerCount, qci1, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
49
        if(success1){
49
        if(success1){
50
            cv::Mat gray;
50
            cv::Mat gray;
51
            cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
51
            cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
52
            cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
52
            cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
53
            // Draw colored chessboard
53
            // Draw colored chessboard
54
            SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
54
            SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
55
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame1Result, checkerCount, qci1, success1, 10);
55
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame1Result, checkerCount, qci1, success1, 10);
56
        }
56
        }
57
 
57
 
58
        emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
58
        emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
59
 
59
 
60
        SMCalibrationSetI.success = success0 && success1;
60
        SMCalibrationSetI.success = success0 && success1;
61
 
61
 
62
        // Add to whole set
62
        // Add to whole set
63
        if(SMCalibrationSetI.success){
63
        if(SMCalibrationSetI.success){
64
            qc0.push_back(qci0);
64
            qc0.push_back(qci0);
65
            qc1.push_back(qci1);
65
            qc1.push_back(qci1);
66
            angles.push_back(SMCalibrationSetI.rotationAngle);
66
            angles.push_back(SMCalibrationSetI.rotationAngle);
67
        }
67
        }
68
 
68
 
69
        // Show progress
69
        // Show progress
70
        emit newSetProcessed(i);
70
        emit newSetProcessed(i);
71
    }
71
    }
72
 
72
 
73
    int nValidSets = qc0.size();
73
    int nValidSets = qc0.size();
74
    if(nValidSets < 2){
74
    if(nValidSets < 2){
75
        std::cerr << "Not enough valid calibration sequences!" << std::endl;
75
        std::cerr << "Not enough valid calibration sequences!" << std::endl;
76
        emit done();
76
        emit done();
77
        return;
77
        return;
78
    }
78
    }
79
 
79
 
80
    // Generate world object coordinates [mm]
80
    // Generate world object coordinates [mm]
81
    float checkerSize = settings.value("calibration/checkerSize", 15.0).toFloat(); // width and height of one field in mm
81
    float checkerSize = settings.value("calibration/checkerSize", 15.0).toFloat(); // width and height of one field in mm
82
    std::vector<cv::Point3f> Qi;
82
    std::vector<cv::Point3f> Qi;
83
    for (int h=0; h<checkerCount.height; h++)
83
    for (int h=0; h<checkerCount.height; h++)
84
        for (int w=0; w<checkerCount.width; w++)
84
        for (int w=0; w<checkerCount.width; w++)
85
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
85
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
86
    std::vector< std::vector<cv::Point3f> > Q;
86
    std::vector< std::vector<cv::Point3f> > Q;
87
    for(int i=0; i<qc0.size(); i++)
87
    for(int i=0; i<qc0.size(); i++)
88
        Q.push_back(Qi);
88
        Q.push_back(Qi);
89
 
89
 
90
    // calibrate the cameras
90
    // calibrate the cameras
91
    SMCalibrationParameters cal;
91
    SMCalibrationParameters cal;
92
    cal.frameWidth = calibrationData[0].frame0.cols;
92
    cal.frameWidth = calibrationData[0].frame0.cols;
93
    cal.frameHeight = calibrationData[0].frame0.rows;
93
    cal.frameHeight = calibrationData[0].frame0.rows;
94
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
94
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
95
 
95
 
96
    // determine only k1, k2 for lens distortion
96
    // determine only k1, k2 for lens distortion
97
    int flags = 0; //cv::CALIB_FIX_K3;
97
    int flags = 0; //cv::CALIB_FIX_K3;
98
    // Note: several of the output arguments below must be cv::Mat, otherwise segfault
98
    // Note: several of the output arguments below must be cv::Mat, otherwise segfault
99
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
99
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
100
    cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
100
    cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
101
 
101
 
102
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
102
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
103
    cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
103
    cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
104
 
104
 
105
    // stereo calibration (fix K0, K1, k0, k1)
105
    // stereo calibration (fix K0, K1, k0, k1)
106
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;
106
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;
107
    cv::Mat E, F, R1, T1;
107
    cv::Mat E, F, R1, T1;
108
    cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
108
    cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
109
                                              frameSize, R1, T1, E, F,
109
                                              frameSize, R1, T1, E, F,
110
                                              cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
110
                                              cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
111
                                              flags_stereo);
111
                                              flags_stereo);
112
 
112
 
113
    cal.R1 = R1;
113
    cal.R1 = R1;
114
    cal.T1 = T1;
114
    cal.T1 = T1;
115
    cal.E = E;
115
    cal.E = E;
116
    cal.F = F;
116
    cal.F = F;
117
 
117
 
118
    // calibrate rotation axis
118
    // calibrate rotation axis
119
    std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
119
    std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
120
    std::vector<cv::Vec3f> Tc(nValidSets - 1);
120
    std::vector<cv::Vec3f> Tc(nValidSets - 1);
121
    std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
121
    std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
122
    std::vector<cv::Vec3f> Tr(nValidSets - 1);
122
    std::vector<cv::Vec3f> Tr(nValidSets - 1);
123
    for(int i=0; i<nValidSets-1; i++){
123
    for(int i=0; i<nValidSets-1; i++){
124
        // relative transformations in camera
124
        // relative transformations in camera
125
        cv::Mat cRw1, cRw2;
125
        cv::Mat cRw1, cRw2;
126
        cv::Rodrigues(cam_rvecs0[i], cRw1);
126
        cv::Rodrigues(cam_rvecs0[i], cRw1);
127
        cv::Rodrigues(cam_rvecs0[i+1], cRw2);
127
        cv::Rodrigues(cam_rvecs0[i+1], cRw2);
128
        cv::Mat cTw1 = cam_tvecs0[i];
128
        cv::Mat cTw1 = cam_tvecs0[i];
129
        cv::Mat cTw2 = cam_tvecs0[i+1];
129
        cv::Mat cTw2 = cam_tvecs0[i+1];
130
        cv::Mat w1Rc = cRw1.t();
130
        cv::Mat w1Rc = cRw1.t();
131
        cv::Mat w1Tc = -cRw1.t()*cTw1;
131
        cv::Mat w1Tc = -cRw1.t()*cTw1;
132
        Rc[i] = cv::Mat(cRw2*w1Rc);
132
        Rc[i] = cv::Mat(cRw2*w1Rc);
133
        Tc[i] = cv::Mat(cRw2*w1Tc+cTw2);
133
        Tc[i] = cv::Mat(cRw2*w1Tc+cTw2);
134
 
134
 
135
        // relative transformations in rotation stage
135
        // relative transformations in rotation stage
136
        // we define the rotation axis to be in origo, pointing in positive y direction
136
        // we define the rotation axis to be in origo, pointing in positive y direction
137
        float angleRadians = (angles[i+1]-angles[i])/180.0*M_PI;
137
        float angleRadians = (angles[i+1]-angles[i])/180.0*M_PI;
138
        cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
138
        cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
139
        cv::Mat Rri;
139
        cv::Mat Rri;
140
        cv::Rodrigues(rot_rvec, Rri);
140
        cv::Rodrigues(rot_rvec, Rri);
141
        Rr[i] = Rri;
141
        Rr[i] = Rri;
142
        Tr[i] = 0.0;
142
        Tr[i] = 0.0;
143
 
143
 
144
        std::cout << i << std::endl;
144
//        std::cout << i << std::endl;
145
//        std::cout << "cTw1" << cTw1 << std::endl;
145
//        std::cout << "cTw1" << cTw1 << std::endl;
146
//        std::cout << "cTw2" << cTw2 << std::endl;
146
//        std::cout << "cTw2" << cTw2 << std::endl;
147
//        std::cout << "w2Rc" << w2Rc << std::endl;
147
//        std::cout << "w2Rc" << w2Rc << std::endl;
148
//        std::cout << "w2Tc" << w2Tc << std::endl;
148
//        std::cout << "w2Tc" << w2Tc << std::endl;
149
 
149
 
150
//        std::cout << "w2Rc" << w2Rc << std::endl;
150
//        std::cout << "w2Rc" << w2Rc << std::endl;
151
//        std::cout << "w2Tc" << w2Tc << std::endl;
151
//        std::cout << "w2Tc" << w2Tc << std::endl;
152
 
152
 
-
 
153
//        cv::Mat Rci;
-
 
154
//        cv::Rodrigues(Rc[i], Rci);
-
 
155
//        std::cout << "Rci" << Rci << std::endl;
-
 
156
//        std::cout << "Tc[i]" << Tc[i] << std::endl;
-
 
157
 
-
 
158
//        std::cout << "rot_rvec" << rot_rvec << std::endl;
-
 
159
//        std::cout << "Tr[i]" << Tr[i] << std::endl;
-
 
160
//        std::cout << std::endl;
-
 
161
    }
-
 
162
 
-
 
163
    // determine the transformation from rotation stage to camera 0
-
 
164
    cvtools::handEyeCalibrationTsai(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
-
 
165
 
-
 
166
    for(int i=0; i<nValidSets-1; i++){
-
 
167
        std::cout << i << std::endl;
-
 
168
 
153
        cv::Mat Rci;
169
        cv::Mat Rci;
154
        cv::Rodrigues(Rc[i], Rci);
170
        cv::Rodrigues(Rc[i], Rci);
155
        std::cout << "Rci" << Rci << std::endl;
171
        std::cout << "Rc[i]" << Rci << std::endl;
156
        std::cout << "Tc[i]" << Tc[i] << std::endl;
172
        std::cout << "Tc[i]" << Tc[i] << std::endl;
157
 
173
 
-
 
174
        cv::Mat Rri;
-
 
175
        cv::Rodrigues(Rr[i], Rri);
158
        std::cout << "rot_rvec" << rot_rvec << std::endl;
176
        std::cout << "Rr[i]" << Rri << std::endl;
159
        std::cout << "Tr[i]" << Tr[i] << std::endl;
177
        std::cout << "Tr[i]" << Tr[i] << std::endl;
-
 
178
 
-
 
179
        cv::Mat Rcr = cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t());
-
 
180
        cv::Rodrigues(Rcr, Rcr);
-
 
181
        cv::Mat Tcr = -cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t())*cv::Mat(cal.Tr) + cv::Mat(cal.Rr)*cv::Mat(Tc[i]) + cv::Mat(cal.Tr);
-
 
182
        std::cout << "Rcr[i]" << Rcr << std::endl;
-
 
183
        std::cout << "Tcr[i]" << Tcr << std::endl;
160
        std::cout << std::endl;
184
        std::cout << std::endl;
161
    }
185
    }
162
 
186
 
163
    // determine the transformation from rotation stage to camera 0
-
 
164
    cvtools::handEyeCalibrationTsai(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
-
 
165
 
-
 
166
    cv::Mat rrvec;
187
    cv::Mat rrvec;
167
    cv::Rodrigues(cal.Rr, rrvec);
188
    cv::Rodrigues(cal.Rr, rrvec);
168
    std::cout << "rrvec:" << rrvec << std::endl;
189
    std::cout << "rrvec:" << rrvec << std::endl;
169
 
190
 
170
    // Print to std::cout
191
    // Print to std::cout
171
    cal.print();
192
    cal.print();
172
 
193
 
173
    // save to (reentrant qsettings object)
194
    // save to (reentrant qsettings object)
174
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
195
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
175
 
196
 
176
    emit done();
197
    emit done();
177
 
198
 
178
}
199
}
179
 
200