Subversion Repositories seema-scanner

Rev

Rev 88 | Rev 111 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 88 Rev 91
1
#include "SMCalibrationWorker.h"
1
#include "SMCalibrationWorker.h"
2
#include "SMCalibrationParameters.h"
2
#include "SMCalibrationParameters.h"
3
 
3
 
4
#include "cvtools.h"
4
#include "cvtools.h"
5
 
5
 
6
#include <QSettings>
6
#include <QSettings>
7
 
7
 
8
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
8
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
9
 
9
 
10
    QSettings settings;
10
    QSettings settings;
11
 
11
 
12
    // Number of saddle points on calibration pattern
12
    // Number of saddle points on calibration pattern
13
    int checkerCountX = settings.value("calibration/checkerCountX", 22).toInt();
13
    int checkerCountX = settings.value("calibration/checkerCountX", 22).toInt();
14
    int checkerCountY = settings.value("calibration/checkerCountY", 13).toInt();
14
    int checkerCountY = settings.value("calibration/checkerCountY", 13).toInt();
15
    cv::Size checkerCount(checkerCountX, checkerCountY);
15
    cv::Size checkerCount(checkerCountX, checkerCountY);
16
 
16
 
17
    int nSets = calibrationData.size();
17
    int nSets = calibrationData.size();
18
 
18
 
19
    std::vector< std::vector<cv::Point2f> > qc0, qc1;
19
    std::vector< std::vector<cv::Point2f> > qc0, qc1;
20
    std::vector<float> angles;
20
    std::vector<float> angles;
21
 
21
 
22
    // Loop through calibration sets
22
    // Loop through calibration sets
23
    for(int i=0; i<nSets; i++){
23
    for(int i=0; i<nSets; i++){
24
 
24
 
25
        SMCalibrationSet SMCalibrationSetI = calibrationData[i];
25
        SMCalibrationSet SMCalibrationSetI = calibrationData[i];
26
 
26
 
27
        if(!SMCalibrationSetI.checked)
27
        if(!SMCalibrationSetI.checked)
28
            continue;
28
            continue;
29
 
29
 
30
        // Camera 0
30
        // Camera 0
31
        std::vector<cv::Point2f> qci0;
31
        std::vector<cv::Point2f> qci0;
32
        // Extract checker corners
32
        // Extract checker corners
33
        bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, checkerCount, qci0, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
33
        bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, checkerCount, qci0, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
34
        if(success0){
34
        if(success0){
35
            cv::Mat gray;
35
            cv::Mat gray;
36
            cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
36
            cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
37
            cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
37
            cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
38
            // Draw colored chessboard
38
            // Draw colored chessboard
39
            SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
39
            SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
40
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame0Result, checkerCount, qci0, success0, 10);
40
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame0Result, checkerCount, qci0, success0, 10);
41
        }
41
        }
42
 
42
 
43
        emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
43
        emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
44
 
44
 
45
        // Camera 1
45
        // Camera 1
46
        std::vector<cv::Point2f> qci1;
46
        std::vector<cv::Point2f> qci1;
47
        // Extract checker corners
47
        // Extract checker corners
48
        bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, checkerCount, qci1, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
48
        bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, checkerCount, qci1, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
49
        if(success1){
49
        if(success1){
50
            cv::Mat gray;
50
            cv::Mat gray;
51
            cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
51
            cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
52
            cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
52
            cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
53
            // Draw colored chessboard
53
            // Draw colored chessboard
54
            SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
54
            SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
55
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame1Result, checkerCount, qci1, success1, 10);
55
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame1Result, checkerCount, qci1, success1, 10);
56
        }
56
        }
57
 
57
 
58
        emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
58
        emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
59
 
59
 
60
        SMCalibrationSetI.success = success0 && success1;
60
        SMCalibrationSetI.success = success0 && success1;
61
 
61
 
62
        // Add to whole set
62
        // Add to whole set
63
        if(SMCalibrationSetI.success){
63
        if(SMCalibrationSetI.success){
64
            qc0.push_back(qci0);
64
            qc0.push_back(qci0);
65
            qc1.push_back(qci1);
65
            qc1.push_back(qci1);
66
            angles.push_back(SMCalibrationSetI.rotationAngle);
66
            angles.push_back(SMCalibrationSetI.rotationAngle);
67
        }
67
        }
68
 
68
 
69
        // Show progress
69
        // Show progress
70
        emit newSetProcessed(i);
70
        emit newSetProcessed(i);
71
    }
71
    }
72
 
72
 
73
    int nValidSets = qc0.size();
73
    int nValidSets = qc0.size();
74
    if(nValidSets < 2){
74
    if(nValidSets < 2){
75
        std::cerr << "Not enough valid calibration sequences!" << std::endl;
75
        std::cerr << "Not enough valid calibration sequences!" << std::endl;
76
        emit done();
76
        emit done();
77
        return;
77
        return;
78
    }
78
    }
79
 
79
 
80
    // Generate world object coordinates [mm]
80
    // Generate world object coordinates [mm]
81
    float checkerSize = settings.value("calibration/checkerSize", 15.0).toFloat(); // width and height of one field in mm
81
    float checkerSize = settings.value("calibration/checkerSize", 15.0).toFloat(); // width and height of one field in mm
82
    std::vector<cv::Point3f> Qi;
82
    std::vector<cv::Point3f> Qi;
83
    for (int h=0; h<checkerCount.height; h++)
83
    for (int h=0; h<checkerCount.height; h++)
84
        for (int w=0; w<checkerCount.width; w++)
84
        for (int w=0; w<checkerCount.width; w++)
85
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
85
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
86
    std::vector< std::vector<cv::Point3f> > Q;
86
    std::vector< std::vector<cv::Point3f> > Q;
87
    for(int i=0; i<qc0.size(); i++)
87
    for(int i=0; i<qc0.size(); i++)
88
        Q.push_back(Qi);
88
        Q.push_back(Qi);
89
 
89
 
90
    // calibrate the cameras
90
    // calibrate the cameras
91
    SMCalibrationParameters cal;
91
    SMCalibrationParameters cal;
92
    cal.frameWidth = calibrationData[0].frame0.cols;
92
    cal.frameWidth = calibrationData[0].frame0.cols;
93
    cal.frameHeight = calibrationData[0].frame0.rows;
93
    cal.frameHeight = calibrationData[0].frame0.rows;
94
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
94
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
95
 
95
 
96
    // determine only k1, k2 for lens distortion
96
    // determine only k1, k2 for lens distortion
97
    int flags = cv::CALIB_FIX_K3;
97
    int flags = cv::CALIB_FIX_K3;
98
    // Note: several of the output arguments below must be cv::Mat, otherwise segfault
98
    // Note: several of the output arguments below must be cv::Mat, otherwise segfault
99
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
99
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
100
    cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
100
    cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
101
 
101
 
102
    // refine extrinsics for camera 0
102
    // refine extrinsics for camera 0
103
    for(int i=0; i<Q.size(); i++)
103
    for(int i=0; i<Q.size(); i++)
104
        cv::solvePnPRansac(Q[i], qc0[i], cal.K0, cal.k0, cam_rvecs0[i], cam_tvecs0[i], true, 100, 0.05, 100, cv::noArray(), CV_ITERATIVE);
104
        cv::solvePnPRansac(Q[i], qc0[i], cal.K0, cal.k0, cam_rvecs0[i], cam_tvecs0[i], true, 100, 0.05, 100, cv::noArray(), CV_ITERATIVE);
105
 
105
 
106
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
106
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
107
    cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
107
    cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
108
 
108
 
109
    // stereo calibration (fix K0, K1, k0, k1)
109
    // stereo calibration (fix K0, K1, k0, k1)
110
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;
110
    int flags_stereo = cv::CALIB_FIX_INTRINSIC;
111
    cv::Mat E, F, R1, T1;
111
    cv::Mat E, F, R1, T1;
112
    cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
112
    cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
113
                                              frameSize, R1, T1, E, F,
113
                                              frameSize, R1, T1, E, F,
114
                                              cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
114
                                              cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
115
                                              flags_stereo);
115
                                              flags_stereo);
116
 
116
 
117
    cal.R1 = R1;
117
    cal.R1 = R1;
118
    cal.T1 = T1;
118
    cal.T1 = T1;
119
    cal.E = E;
119
    cal.E = E;
120
    cal.F = F;
120
    cal.F = F;
121
 
121
 
122
    // calibrate rotation axis 1
122
//    // hand-eye calibration
123
    std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
123
//    std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
124
    std::vector<cv::Vec3f> Tc(nValidSets - 1);
124
//    std::vector<cv::Vec3f> Tc(nValidSets - 1);
125
    std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
125
//    std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
126
    std::vector<cv::Vec3f> Tr(nValidSets - 1);
126
//    std::vector<cv::Vec3f> Tr(nValidSets - 1);
127
    for(int i=0; i<nValidSets-1; i++){
127
//    for(int i=0; i<nValidSets-1; i++){
128
        // relative transformations in camera
128
//        // relative transformations in camera
129
        cv::Mat cRw1, cRw2;
129
//        cv::Mat cRw1, cRw2;
130
        cv::Rodrigues(cam_rvecs0[i], cRw1);
130
//        cv::Rodrigues(cam_rvecs0[i], cRw1);
131
        cv::Rodrigues(cam_rvecs0[i+1], cRw2);
131
//        cv::Rodrigues(cam_rvecs0[i+1], cRw2);
132
        cv::Mat cTw1 = cam_tvecs0[i];
132
//        cv::Mat cTw1 = cam_tvecs0[i];
133
        cv::Mat cTw2 = cam_tvecs0[i+1];
133
//        cv::Mat cTw2 = cam_tvecs0[i+1];
134
        cv::Mat w1Rc = cRw1.t();
134
//        cv::Mat w1Rc = cRw1.t();
135
        cv::Mat w1Tc = -cRw1.t()*cTw1;
135
//        cv::Mat w1Tc = -cRw1.t()*cTw1;
136
        Rc[i] = cv::Mat(cRw2*w1Rc);
136
//        Rc[i] = cv::Mat(cRw2*w1Rc);
137
        Tc[i] = cv::Mat(cRw2*w1Tc+cTw2);
137
//        Tc[i] = cv::Mat(cRw2*w1Tc+cTw2);
138
 
138
 
139
        // relative transformations in rotation stage
139
//        // relative transformations in rotation stage
140
        // we define the rotation axis to be in origo, pointing in positive y direction
140
//        // we define the rotation axis to be in origo, pointing in positive y direction
141
        float angleRadians = (angles[i+1]-angles[i])/180.0*M_PI;
141
//        float angleRadians = (angles[i+1]-angles[i])/180.0*M_PI;
142
        cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
142
//        cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
143
        cv::Mat Rri;
143
//        cv::Mat Rri;
144
        cv::Rodrigues(rot_rvec, Rri);
144
//        cv::Rodrigues(rot_rvec, Rri);
145
        Rr[i] = Rri;
145
//        Rr[i] = Rri;
146
        Tr[i] = 0.0;
146
//        Tr[i] = 0.0;
-
 
147
 
-
 
148
////        std::cout << i << std::endl;
-
 
149
////        std::cout << "cTw1" << cTw1 << std::endl;
-
 
150
////        std::cout << "cTw2" << cTw2 << std::endl;
-
 
151
////        std::cout << "w2Rc" << w2Rc << std::endl;
-
 
152
////        std::cout << "w2Tc" << w2Tc << std::endl;
-
 
153
 
-
 
154
////        std::cout << "w2Rc" << w2Rc << std::endl;
-
 
155
////        std::cout << "w2Tc" << w2Tc << std::endl;
-
 
156
 
-
 
157
////        cv::Mat Rci;
-
 
158
////        cv::Rodrigues(Rc[i], Rci);
-
 
159
////        std::cout << "Rci" << Rci << std::endl;
-
 
160
////        std::cout << "Tc[i]" << Tc[i] << std::endl;
-
 
161
 
-
 
162
////        std::cout << "rot_rvec" << rot_rvec << std::endl;
-
 
163
////        std::cout << "Tr[i]" << Tr[i] << std::endl;
-
 
164
////        std::cout << std::endl;
-
 
165
//    }
147
 
166
 
148
//        std::cout << i << std::endl;
-
 
149
//        std::cout << "cTw1" << cTw1 << std::endl;
-
 
150
//        std::cout << "cTw2" << cTw2 << std::endl;
167
//    // determine the transformation from rotation stage to camera 0
151
//        std::cout << "w2Rc" << w2Rc << std::endl;
168
//    cvtools::handEyeCalibrationTsai(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
152
//        std::cout << "w2Tc" << w2Tc << std::endl;
-
 
153
 
169
 
154
//        std::cout << "w2Rc" << w2Rc << std::endl;
170
//    for(int i=0; i<nValidSets-1; i++){
155
//        std::cout << "w2Tc" << w2Tc << std::endl;
171
//        std::cout << i << std::endl;
156
 
172
 
157
//        cv::Mat Rci;
173
//        cv::Mat Rci;
158
//        cv::Rodrigues(Rc[i], Rci);
174
//        cv::Rodrigues(Rc[i], Rci);
159
//        std::cout << "Rci" << Rci << std::endl;
175
//        std::cout << "Rc[i]" << Rci << std::endl;
160
//        std::cout << "Tc[i]" << Tc[i] << std::endl;
176
//        std::cout << "Tc[i]" << Tc[i] << std::endl;
161
 
177
 
-
 
178
//        cv::Mat Rri;
-
 
179
//        cv::Rodrigues(Rr[i], Rri);
162
//        std::cout << "rot_rvec" << rot_rvec << std::endl;
180
//        std::cout << "Rr[i]" << Rri << std::endl;
163
//        std::cout << "Tr[i]" << Tr[i] << std::endl;
181
//        std::cout << "Tr[i]" << Tr[i] << std::endl;
164
//        std::cout << std::endl;
-
 
165
    }
-
 
166
 
-
 
167
    // determine the transformation from rotation stage to camera 0
-
 
168
    cvtools::handEyeCalibrationTsai(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
-
 
169
 
182
 
-
 
183
//        cv::Mat Rcr = cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t());
170
    for(int i=0; i<nValidSets-1; i++){
184
//        cv::Rodrigues(Rcr, Rcr);
-
 
185
//        cv::Mat Tcr = -cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t())*cv::Mat(cal.Tr) + cv::Mat(cal.Rr)*cv::Mat(Tc[i]) + cv::Mat(cal.Tr);
-
 
186
//        std::cout << "Rcr[i]" << Rcr << std::endl;
-
 
187
//        std::cout << "Tcr[i]" << Tcr << std::endl;
171
        std::cout << i << std::endl;
188
//        std::cout << std::endl;
-
 
189
//    }
172
 
190
 
173
        cv::Mat Rci;
-
 
174
        cv::Rodrigues(Rc[i], Rci);
-
 
175
        std::cout << "Rc[i]" << Rci << std::endl;
-
 
176
        std::cout << "Tc[i]" << Tc[i] << std::endl;
-
 
177
 
-
 
178
        cv::Mat Rri;
-
 
179
        cv::Rodrigues(Rr[i], Rri);
-
 
180
        std::cout << "Rr[i]" << Rri << std::endl;
-
 
181
        std::cout << "Tr[i]" << Tr[i] << std::endl;
-
 
182
 
-
 
183
        cv::Mat Rcr = cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t());
-
 
184
        cv::Rodrigues(Rcr, Rcr);
-
 
185
        cv::Mat Tcr = -cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t())*cv::Mat(cal.Tr) + cv::Mat(cal.Rr)*cv::Mat(Tc[i]) + cv::Mat(cal.Tr);
-
 
186
        std::cout << "Rcr[i]" << Rcr << std::endl;
-
 
187
        std::cout << "Tcr[i]" << Tcr << std::endl;
-
 
188
        std::cout << std::endl;
-
 
189
    }
-
 
190
std::cout << "Rr: " << cal.Rr << std::endl;
-
 
191
std::cout << "Tr: " << cal.Tr << std::endl;
-
 
192
 
191
 
193
//    //* Using rotation axis calibration *//
192
    // Direct rotation axis calibration //
194
//    // full camera matrices
193
    // full camera matrices
195
//    cv::Matx34f P0 = cal.K0*cv::Matx34f::eye();
194
    cv::Matx34f P0 = cv::Matx34f::eye();
196
//    cv::Mat RT1(3, 4, CV_32F);
195
    cv::Mat RT1(3, 4, CV_32F);
197
//    cv::Mat(cal.R1).copyTo(RT1(cv::Range(0, 3), cv::Range(0, 3)));
196
    cv::Mat(cal.R1).copyTo(RT1(cv::Range(0, 3), cv::Range(0, 3)));
198
//    cv::Mat(cal.T1).copyTo(RT1(cv::Range(0, 3), cv::Range(3, 4)));
197
    cv::Mat(cal.T1).copyTo(RT1(cv::Range(0, 3), cv::Range(3, 4)));
199
//    cv::Matx34f P1 = cal.K1*cv::Matx34f(RT1);
198
    cv::Matx34f P1 = cv::Matx34f(RT1);
200
 
199
 
201
//    // calibration points in camera 0 frame
200
    // calibration points in camera 0 frame
202
//    std::vector< std::vector<cv::Point3f> > Qcam;
201
    std::vector< std::vector<cv::Point3f> > Qcam;
203
 
202
 
204
//    for(int i=0; i<nValidSets; i++){
203
    for(int i=0; i<nValidSets; i++){
205
//        std::vector<cv::Point2f> qc0i, qc1i;
204
        std::vector<cv::Point2f> qc0i, qc1i;
206
 
205
 
207
////        cv::undistortPoints(qc0[i], qc0i, cal.K0, cal.k0);
206
        cv::undistortPoints(qc0[i], qc0i, cal.K0, cal.k0);
208
////        cv::undistortPoints(qc1[i], qc1i, cal.K1, cal.k1);
207
        cv::undistortPoints(qc1[i], qc1i, cal.K1, cal.k1);
209
//        qc0i = qc0[i];
208
//        qc0i = qc0[i];
210
//        qc1i = qc1[i];
209
//        qc1i = qc1[i];
211
 
210
 
212
//        cv::Mat Qhom, Qcami;
211
        cv::Mat Qhom, Qcami;
213
//        cv::triangulatePoints(P0, P1, qc0i, qc1i, Qhom);
212
        cv::triangulatePoints(P0, P1, qc0i, qc1i, Qhom);
214
//        cvtools::convertMatFromHomogeneous(Qhom, Qcami);
213
        cvtools::convertMatFromHomogeneous(Qhom, Qcami);
215
//        std::vector<cv::Point3f> QcamiPoints;
214
        std::vector<cv::Point3f> QcamiPoints;
216
//        cvtools::matToPoints3f(Qcami, QcamiPoints);
215
        cvtools::matToPoints3f(Qcami, QcamiPoints);
217
 
216
 
218
//        Qcam.push_back(QcamiPoints);
217
        Qcam.push_back(QcamiPoints);
219
//    }
218
    }
220
 
219
 
221
//    cv::Vec3f axis, point;
220
    cv::Vec3f axis, point;
222
//    cvtools::rotationAxisCalibration(Qcam, Qi, axis, point);
221
    cvtools::rotationAxisCalibration(Qcam, Qi, axis, point);
223
 
222
 
224
//    // construct transformation matrix
223
    // construct transformation matrix
225
//    cv::Vec3f ex = axis.cross(cv::Vec3f(0,0,-1.0));
224
    cv::Vec3f ex = axis.cross(cv::Vec3f(0,0,1.0));
-
 
225
    ex = cv::normalize(ex);
226
//    cv::Vec3f ez = ex.cross(axis);
226
    cv::Vec3f ez = ex.cross(axis);
-
 
227
    ez = cv::normalize(ez);
227
 
228
 
228
//    cv::Mat RrMat(3, 3, CV_32F);
229
    cv::Mat RrMat(3, 3, CV_32F);
229
//    cv::Mat(ex).copyTo(RrMat.col(0));
230
    cv::Mat(ex).copyTo(RrMat.col(0));
230
//    cv::Mat(axis).copyTo(RrMat.col(1));
231
    cv::Mat(axis).copyTo(RrMat.col(1));
231
//    cv::Mat(ez).copyTo(RrMat.col(2));
232
    cv::Mat(ez).copyTo(RrMat.col(2));
232
 
233
 
233
//    cal.Rr = cv::Mat(RrMat.t());
234
    cal.Rr = cv::Matx33f(RrMat).t();
234
//    cal.Tr = point;
235
    cal.Tr = -cv::Matx33f(RrMat).t()*point;
235
 
236
 
236
    // Print to std::cout
237
    // Print to std::cout
237
    cal.print();
238
    cal.print();
238
 
239
 
239
    // save to (reentrant qsettings object)
240
    // save to (reentrant qsettings object)
240
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
241
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
241
 
242
 
242
    emit done();
243
    emit done();
243
 
244
 
244
}
245
}
245
 
246