Subversion Repositories seema-scanner

Rev

Rev 111 | Rev 114 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
27 jakw 1
#include "SMCalibrationWorker.h"
2
#include "SMCalibrationParameters.h"
22 jakw 3
 
31 jakw 4
#include "cvtools.h"
5
 
22 jakw 6
#include <QSettings>
7
 
27 jakw 8
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
22 jakw 9
 
33 jakw 10
    QSettings settings;
11
 
22 jakw 12
    // Number of saddle points on calibration pattern
80 jakw 13
    int checkerCountX = settings.value("calibration/checkerCountX", 22).toInt();
14
    int checkerCountY = settings.value("calibration/checkerCountY", 13).toInt();
33 jakw 15
    cv::Size checkerCount(checkerCountX, checkerCountY);
22 jakw 16
 
25 jakw 17
    int nSets = calibrationData.size();
22 jakw 18
 
31 jakw 19
    std::vector< std::vector<cv::Point2f> > qc0, qc1;
20
    std::vector<float> angles;
22 jakw 21
 
22
    // Loop through calibration sets
23
    for(int i=0; i<nSets; i++){
24
 
27 jakw 25
        SMCalibrationSet SMCalibrationSetI = calibrationData[i];
25 jakw 26
 
27 jakw 27
        if(!SMCalibrationSetI.checked)
22 jakw 28
            continue;
25 jakw 29
 
30
        // Camera 0
31
        std::vector<cv::Point2f> qci0;
32
        // Extract checker corners
79 jakw 33
        bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, checkerCount, qci0, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
25 jakw 34
        if(success0){
113 jakw 35
            // Convert bayer to grayscale
26 jakw 36
            cv::Mat gray;
113 jakw 37
            cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_BayerBG2GRAY);
38
            cv::cvtColor(gray, gray, CV_RGB2GRAY);
27 jakw 39
            cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
25 jakw 40
            // Draw colored chessboard
27 jakw 41
            SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
50 jakw 42
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame0Result, checkerCount, qci0, success0, 10);
22 jakw 43
        }
44
 
29 jakw 45
        emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
46
 
25 jakw 47
        // Camera 1
48
        std::vector<cv::Point2f> qci1;
49
        // Extract checker corners
79 jakw 50
        bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, checkerCount, qci1, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_FAST_CHECK);
25 jakw 51
        if(success1){
113 jakw 52
            // Convert bayer to grayscale
26 jakw 53
            cv::Mat gray;
113 jakw 54
            cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_BayerBG2GRAY);
27 jakw 55
            cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
25 jakw 56
            // Draw colored chessboard
27 jakw 57
            SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
50 jakw 58
            cvtools::drawChessboardCorners(SMCalibrationSetI.frame1Result, checkerCount, qci1, success1, 10);
22 jakw 59
        }
60
 
29 jakw 61
        emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
62
 
27 jakw 63
        SMCalibrationSetI.success = success0 && success1;
25 jakw 64
 
22 jakw 65
        // Add to whole set
27 jakw 66
        if(SMCalibrationSetI.success){
31 jakw 67
            qc0.push_back(qci0);
68
            qc1.push_back(qci1);
69
            angles.push_back(SMCalibrationSetI.rotationAngle);
22 jakw 70
        }
71
 
27 jakw 72
        // Show progress
73
        emit newSetProcessed(i);
22 jakw 74
    }
75
 
31 jakw 76
    int nValidSets = qc0.size();
27 jakw 77
    if(nValidSets < 2){
22 jakw 78
        std::cerr << "Not enough valid calibration sequences!" << std::endl;
29 jakw 79
        emit done();
22 jakw 80
        return;
81
    }
82
 
83
    // Generate world object coordinates [mm]
33 jakw 84
    float checkerSize = settings.value("calibration/checkerSize", 15.0).toFloat(); // width and height of one field in mm
22 jakw 85
    std::vector<cv::Point3f> Qi;
33 jakw 86
    for (int h=0; h<checkerCount.height; h++)
87
        for (int w=0; w<checkerCount.width; w++)
88
            Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
22 jakw 89
    std::vector< std::vector<cv::Point3f> > Q;
31 jakw 90
    for(int i=0; i<qc0.size(); i++)
22 jakw 91
        Q.push_back(Qi);
92
 
93
    // calibrate the cameras
31 jakw 94
    SMCalibrationParameters cal;
95
    cal.frameWidth = calibrationData[0].frame0.cols;
96
    cal.frameHeight = calibrationData[0].frame0.rows;
97
    cv::Size frameSize(cal.frameWidth, cal.frameHeight);
22 jakw 98
 
68 jakw 99
    // determine only k1, k2 for lens distortion
86 jakw 100
    int flags = cv::CALIB_FIX_K3;
33 jakw 101
    // Note: several of the output arguments below must be cv::Mat, otherwise segfault
102
    std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
31 jakw 103
    cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
27 jakw 104
 
86 jakw 105
    // refine extrinsics for camera 0
106
    for(int i=0; i<Q.size(); i++)
107
        cv::solvePnPRansac(Q[i], qc0[i], cal.K0, cal.k0, cam_rvecs0[i], cam_tvecs0[i], true, 100, 0.05, 100, cv::noArray(), CV_ITERATIVE);
108
 
33 jakw 109
    std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
31 jakw 110
    cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
22 jakw 111
 
111 jakw 112
    // stereo calibration
113
    int flags_stereo = cv::CALIB_USE_INTRINSIC_GUESS + cv::CALIB_FIX_K3;
33 jakw 114
    cv::Mat E, F, R1, T1;
31 jakw 115
    cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
33 jakw 116
                                              frameSize, R1, T1, E, F,
22 jakw 117
                                              cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
118
                                              flags_stereo);
119
 
33 jakw 120
    cal.R1 = R1;
121
    cal.T1 = T1;
122
    cal.E = E;
123
    cal.F = F;
124
 
91 jakw 125
//    // hand-eye calibration
126
//    std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
127
//    std::vector<cv::Vec3f> Tc(nValidSets - 1);
128
//    std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
129
//    std::vector<cv::Vec3f> Tr(nValidSets - 1);
130
//    for(int i=0; i<nValidSets-1; i++){
131
//        // relative transformations in camera
132
//        cv::Mat cRw1, cRw2;
133
//        cv::Rodrigues(cam_rvecs0[i], cRw1);
134
//        cv::Rodrigues(cam_rvecs0[i+1], cRw2);
135
//        cv::Mat cTw1 = cam_tvecs0[i];
136
//        cv::Mat cTw2 = cam_tvecs0[i+1];
137
//        cv::Mat w1Rc = cRw1.t();
138
//        cv::Mat w1Tc = -cRw1.t()*cTw1;
139
//        Rc[i] = cv::Mat(cRw2*w1Rc);
140
//        Tc[i] = cv::Mat(cRw2*w1Tc+cTw2);
31 jakw 141
 
91 jakw 142
//        // relative transformations in rotation stage
143
//        // we define the rotation axis to be in origo, pointing in positive y direction
144
//        float angleRadians = (angles[i+1]-angles[i])/180.0*M_PI;
145
//        cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
146
//        cv::Mat Rri;
147
//        cv::Rodrigues(rot_rvec, Rri);
148
//        Rr[i] = Rri;
149
//        Tr[i] = 0.0;
33 jakw 150
 
91 jakw 151
////        std::cout << i << std::endl;
152
////        std::cout << "cTw1" << cTw1 << std::endl;
153
////        std::cout << "cTw2" << cTw2 << std::endl;
154
////        std::cout << "w2Rc" << w2Rc << std::endl;
155
////        std::cout << "w2Tc" << w2Tc << std::endl;
156
 
157
////        std::cout << "w2Rc" << w2Rc << std::endl;
158
////        std::cout << "w2Tc" << w2Tc << std::endl;
159
 
160
////        cv::Mat Rci;
161
////        cv::Rodrigues(Rc[i], Rci);
162
////        std::cout << "Rci" << Rci << std::endl;
163
////        std::cout << "Tc[i]" << Tc[i] << std::endl;
164
 
165
////        std::cout << "rot_rvec" << rot_rvec << std::endl;
166
////        std::cout << "Tr[i]" << Tr[i] << std::endl;
167
////        std::cout << std::endl;
168
//    }
169
 
170
//    // determine the transformation from rotation stage to camera 0
171
//    cvtools::handEyeCalibrationTsai(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
172
 
173
//    for(int i=0; i<nValidSets-1; i++){
81 jakw 174
//        std::cout << i << std::endl;
33 jakw 175
 
81 jakw 176
//        cv::Mat Rci;
177
//        cv::Rodrigues(Rc[i], Rci);
91 jakw 178
//        std::cout << "Rc[i]" << Rci << std::endl;
81 jakw 179
//        std::cout << "Tc[i]" << Tc[i] << std::endl;
180
 
91 jakw 181
//        cv::Mat Rri;
182
//        cv::Rodrigues(Rr[i], Rri);
183
//        std::cout << "Rr[i]" << Rri << std::endl;
81 jakw 184
//        std::cout << "Tr[i]" << Tr[i] << std::endl;
91 jakw 185
 
186
//        cv::Mat Rcr = cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t());
187
//        cv::Rodrigues(Rcr, Rcr);
188
//        cv::Mat Tcr = -cv::Mat(cal.Rr)*cv::Mat(Rc[i])*cv::Mat(cal.Rr.t())*cv::Mat(cal.Tr) + cv::Mat(cal.Rr)*cv::Mat(Tc[i]) + cv::Mat(cal.Tr);
189
//        std::cout << "Rcr[i]" << Rcr << std::endl;
190
//        std::cout << "Tcr[i]" << Tcr << std::endl;
81 jakw 191
//        std::cout << std::endl;
91 jakw 192
//    }
81 jakw 193
 
194
 
91 jakw 195
    // Direct rotation axis calibration //
196
    // full camera matrices
197
    cv::Matx34f P0 = cv::Matx34f::eye();
198
    cv::Mat RT1(3, 4, CV_32F);
199
    cv::Mat(cal.R1).copyTo(RT1(cv::Range(0, 3), cv::Range(0, 3)));
200
    cv::Mat(cal.T1).copyTo(RT1(cv::Range(0, 3), cv::Range(3, 4)));
201
    cv::Matx34f P1 = cv::Matx34f(RT1);
81 jakw 202
 
91 jakw 203
    // calibration points in camera 0 frame
204
    std::vector< std::vector<cv::Point3f> > Qcam;
33 jakw 205
 
91 jakw 206
    for(int i=0; i<nValidSets; i++){
207
        std::vector<cv::Point2f> qc0i, qc1i;
81 jakw 208
 
91 jakw 209
        cv::undistortPoints(qc0[i], qc0i, cal.K0, cal.k0);
210
        cv::undistortPoints(qc1[i], qc1i, cal.K1, cal.k1);
88 jakw 211
//        qc0i = qc0[i];
212
//        qc1i = qc1[i];
84 jakw 213
 
91 jakw 214
        cv::Mat Qhom, Qcami;
215
        cv::triangulatePoints(P0, P1, qc0i, qc1i, Qhom);
216
        cvtools::convertMatFromHomogeneous(Qhom, Qcami);
217
        std::vector<cv::Point3f> QcamiPoints;
218
        cvtools::matToPoints3f(Qcami, QcamiPoints);
84 jakw 219
 
91 jakw 220
        Qcam.push_back(QcamiPoints);
221
    }
84 jakw 222
 
91 jakw 223
    cv::Vec3f axis, point;
224
    cvtools::rotationAxisCalibration(Qcam, Qi, axis, point);
84 jakw 225
 
91 jakw 226
    // construct transformation matrix
227
    cv::Vec3f ex = axis.cross(cv::Vec3f(0,0,1.0));
228
    ex = cv::normalize(ex);
229
    cv::Vec3f ez = ex.cross(axis);
230
    ez = cv::normalize(ez);
84 jakw 231
 
91 jakw 232
    cv::Mat RrMat(3, 3, CV_32F);
233
    cv::Mat(ex).copyTo(RrMat.col(0));
234
    cv::Mat(axis).copyTo(RrMat.col(1));
235
    cv::Mat(ez).copyTo(RrMat.col(2));
84 jakw 236
 
91 jakw 237
    cal.Rr = cv::Matx33f(RrMat).t();
238
    cal.Tr = -cv::Matx33f(RrMat).t()*point;
84 jakw 239
 
27 jakw 240
    // Print to std::cout
241
    cal.print();
242
 
243
    // save to (reentrant qsettings object)
33 jakw 244
    settings.setValue("calibration/parameters", QVariant::fromValue(cal));
27 jakw 245
 
246
    emit done();
247
 
22 jakw 248
}