Line 5... |
Line 5... |
5 |
|
5 |
|
6 |
#include <QSettings>
|
6 |
#include <QSettings>
|
7 |
|
7 |
|
8 |
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
|
8 |
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
|
9 |
|
9 |
|
- |
|
10 |
QSettings settings;
|
- |
|
11 |
|
10 |
// Number of saddle points on calibration pattern
|
12 |
// Number of saddle points on calibration pattern
|
- |
|
13 |
int checkerCountX = settings.value("calibration/checkerCountX", 10).toInt();
|
- |
|
14 |
int checkerCountY = settings.value("calibration/checkerCountY", 9).toInt();
|
11 |
cv::Size patternSize(10, 9);
|
15 |
cv::Size checkerCount(checkerCountX, checkerCountY);
|
12 |
|
16 |
|
13 |
int nSets = calibrationData.size();
|
17 |
int nSets = calibrationData.size();
|
14 |
|
18 |
|
15 |
std::vector< std::vector<cv::Point2f> > qc0, qc1;
|
19 |
std::vector< std::vector<cv::Point2f> > qc0, qc1;
|
16 |
std::vector<float> angles;
|
20 |
std::vector<float> angles;
|
Line 24... |
Line 28... |
24 |
continue;
|
28 |
continue;
|
25 |
|
29 |
|
26 |
// Camera 0
|
30 |
// Camera 0
|
27 |
std::vector<cv::Point2f> qci0;
|
31 |
std::vector<cv::Point2f> qci0;
|
28 |
// Extract checker corners
|
32 |
// Extract checker corners
|
29 |
bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, patternSize, qci0, cv::CALIB_CB_ADAPTIVE_THRESH);
|
33 |
bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, checkerCount, qci0, cv::CALIB_CB_ADAPTIVE_THRESH);
|
30 |
if(success0){
|
34 |
if(success0){
|
31 |
cv::Mat gray;
|
35 |
cv::Mat gray;
|
32 |
cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
|
36 |
cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
|
33 |
cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
|
37 |
cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
|
34 |
// Draw colored chessboard
|
38 |
// Draw colored chessboard
|
35 |
SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
|
39 |
SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
|
36 |
cv::drawChessboardCorners(SMCalibrationSetI.frame0Result, patternSize, qci0, success0);
|
40 |
cv::drawChessboardCorners(SMCalibrationSetI.frame0Result, checkerCount, qci0, success0);
|
37 |
}
|
41 |
}
|
38 |
|
42 |
|
39 |
emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
|
43 |
emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
|
40 |
|
44 |
|
41 |
// Camera 1
|
45 |
// Camera 1
|
42 |
std::vector<cv::Point2f> qci1;
|
46 |
std::vector<cv::Point2f> qci1;
|
43 |
// Extract checker corners
|
47 |
// Extract checker corners
|
44 |
bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, patternSize, qci1, cv::CALIB_CB_ADAPTIVE_THRESH);
|
48 |
bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, checkerCount, qci1, cv::CALIB_CB_ADAPTIVE_THRESH);
|
45 |
if(success1){
|
49 |
if(success1){
|
46 |
cv::Mat gray;
|
50 |
cv::Mat gray;
|
47 |
cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
|
51 |
cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
|
48 |
cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
|
52 |
cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
|
49 |
// Draw colored chessboard
|
53 |
// Draw colored chessboard
|
50 |
SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
|
54 |
SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
|
51 |
cv::drawChessboardCorners(SMCalibrationSetI.frame1Result, patternSize, qci1, success1);
|
55 |
cv::drawChessboardCorners(SMCalibrationSetI.frame1Result, checkerCount, qci1, success1);
|
52 |
}
|
56 |
}
|
53 |
|
57 |
|
54 |
emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
|
58 |
emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
|
55 |
|
59 |
|
56 |
SMCalibrationSetI.success = success0 && success1;
|
60 |
SMCalibrationSetI.success = success0 && success1;
|
Line 72... |
Line 76... |
72 |
emit done();
|
76 |
emit done();
|
73 |
return;
|
77 |
return;
|
74 |
}
|
78 |
}
|
75 |
|
79 |
|
76 |
// Generate world object coordinates [mm]
|
80 |
// Generate world object coordinates [mm]
|
- |
|
81 |
float checkerSize = settings.value("calibration/checkerSize", 15.0).toFloat(); // width and height of one field in mm
|
77 |
std::vector<cv::Point3f> Qi;
|
82 |
std::vector<cv::Point3f> Qi;
|
78 |
for (int h=0; h<patternSize.height; h++)
|
83 |
for (int h=0; h<checkerCount.height; h++)
|
79 |
for (int w=0; w<patternSize.width; w++)
|
84 |
for (int w=0; w<checkerCount.width; w++)
|
80 |
Qi.push_back(cv::Point3f(5 * w, 5* h, 0.0)); // 5mm chess field size
|
85 |
Qi.push_back(cv::Point3f(checkerSize * w, checkerSize* h, 0.0));
|
81 |
std::vector< std::vector<cv::Point3f> > Q;
|
86 |
std::vector< std::vector<cv::Point3f> > Q;
|
82 |
for(int i=0; i<qc0.size(); i++)
|
87 |
for(int i=0; i<qc0.size(); i++)
|
83 |
Q.push_back(Qi);
|
88 |
Q.push_back(Qi);
|
84 |
|
89 |
|
85 |
// calibrate the cameras
|
90 |
// calibrate the cameras
|
Line 88... |
Line 93... |
88 |
cal.frameHeight = calibrationData[0].frame0.rows;
|
93 |
cal.frameHeight = calibrationData[0].frame0.rows;
|
89 |
cv::Size frameSize(cal.frameWidth, cal.frameHeight);
|
94 |
cv::Size frameSize(cal.frameWidth, cal.frameHeight);
|
90 |
|
95 |
|
91 |
int flags = 0; //cv::CALIB_FIX_K3;
|
96 |
int flags = 0; //cv::CALIB_FIX_K3;
|
92 |
|
97 |
|
- |
|
98 |
// Note: several of the output arguments below must be cv::Mat, otherwise segfault
|
93 |
std::vector<cv::Vec3f> cam_rvecs0, cam_tvecs0;
|
99 |
std::vector<cv::Mat> cam_rvecs0, cam_tvecs0;
|
94 |
cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
|
100 |
cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
|
95 |
|
101 |
|
96 |
std::vector<cv::Vec3f> cam_rvecs1, cam_tvecs1;
|
102 |
std::vector<cv::Mat> cam_rvecs1, cam_tvecs1;
|
97 |
cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
|
103 |
cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
|
98 |
|
104 |
|
99 |
// stereo calibration (fix K0, K1, k0, k1)
|
105 |
// stereo calibration (fix K0, K1, k0, k1)
|
100 |
int flags_stereo = cv::CALIB_FIX_INTRINSIC;
|
106 |
int flags_stereo = cv::CALIB_FIX_INTRINSIC;
|
- |
|
107 |
cv::Mat E, F, R1, T1;
|
101 |
cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
|
108 |
cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
|
102 |
frameSize, cal.R1, cal.T1, cal.E, cal.F,
|
109 |
frameSize, R1, T1, E, F,
|
103 |
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
|
110 |
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
|
104 |
flags_stereo);
|
111 |
flags_stereo);
|
105 |
|
112 |
|
- |
|
113 |
cal.R1 = R1;
|
- |
|
114 |
cal.T1 = T1;
|
- |
|
115 |
cal.E = E;
|
- |
|
116 |
cal.F = F;
|
- |
|
117 |
|
106 |
// calibrate rotation axis
|
118 |
// calibrate rotation axis
|
107 |
std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
|
119 |
std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
|
108 |
std::vector<cv::Vec3f> Tc(nValidSets - 1);
|
120 |
std::vector<cv::Vec3f> Tc(nValidSets - 1);
|
109 |
std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
|
121 |
std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
|
110 |
std::vector<cv::Vec3f> Tr(nValidSets - 1);
|
122 |
std::vector<cv::Vec3f> Tr(nValidSets - 1);
|
111 |
for(int i=0; i<nValidSets-1; i++){
|
123 |
for(int i=0; i<nValidSets-1; i++){
|
112 |
// relative transformations in camera
|
124 |
// relative transformations in camera
|
113 |
cv::Matx33f cRw1, cRw2;
|
125 |
cv::Mat cRw1, cRw2;
|
114 |
cv::Rodrigues(cam_rvecs0[i], cRw1);
|
126 |
cv::Rodrigues(cam_rvecs0[i], cRw1);
|
115 |
cv::Rodrigues(cam_rvecs0[i+1], cRw2);
|
127 |
cv::Rodrigues(cam_rvecs0[i+1], cRw2);
|
116 |
cv::Vec3f cTw1 = cam_tvecs0[i];
|
128 |
cv::Mat cTw1 = cam_tvecs0[i];
|
117 |
cv::Vec3f cTw2 = cam_tvecs0[i+1];
|
129 |
cv::Mat cTw2 = cam_tvecs0[i+1];
|
118 |
|
- |
|
- |
|
130 |
cv::Mat w1Rc = cRw1.t();
|
119 |
cv::composeRT(cRw1, cTw1, cRw2.t(), -cRw2.t()*cTw2, Rc[i], Tc[i]);
|
131 |
cv::Mat w1Tc = -cRw1.t()*cTw1;
|
- |
|
132 |
Rc[i] = cv::Mat(cRw2*w1Rc);
|
- |
|
133 |
Tc[i] = cv::Mat(cRw2*w1Tc+cTw2);
|
120 |
|
134 |
|
121 |
// relative transformations in rotation stage
|
135 |
// relative transformations in rotation stage
|
122 |
// we define the rotation axis to be in origo, pointing in positive y direction
|
136 |
// we define the rotation axis to be in origo, pointing in positive y direction
|
123 |
float angleRadians = angles[i]/180.0*M_PI;
|
137 |
float angleRadians = (angles[i+1]-angles[i])/180.0*M_PI;
|
124 |
cv::Vec3f rot_rvec(0.0, angleRadians, 0.0);
|
138 |
cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
|
- |
|
139 |
cv::Mat Rri;
|
125 |
cv::Rodrigues(rot_rvec, Rr[i]);
|
140 |
cv::Rodrigues(rot_rvec, Rri);
|
- |
|
141 |
Rr[i] = Rri;
|
126 |
Tr[i] = 0.0;
|
142 |
Tr[i] = 0.0;
|
- |
|
143 |
|
- |
|
144 |
std::cout << i << std::endl;
|
- |
|
145 |
// std::cout << "cTw1" << cTw1 << std::endl;
|
- |
|
146 |
// std::cout << "cTw2" << cTw2 << std::endl;
|
- |
|
147 |
// std::cout << "w2Rc" << w2Rc << std::endl;
|
- |
|
148 |
// std::cout << "w2Tc" << w2Tc << std::endl;
|
- |
|
149 |
|
- |
|
150 |
// std::cout << "w2Rc" << w2Rc << std::endl;
|
- |
|
151 |
// std::cout << "w2Tc" << w2Tc << std::endl;
|
- |
|
152 |
|
- |
|
153 |
cv::Mat Rci;
|
- |
|
154 |
cv::Rodrigues(Rc[i], Rci);
|
- |
|
155 |
std::cout << "Rci" << Rci << std::endl;
|
- |
|
156 |
std::cout << "Tc[i]" << Tc[i] << std::endl;
|
- |
|
157 |
|
- |
|
158 |
std::cout << "rot_rvec" << rot_rvec << std::endl;
|
- |
|
159 |
std::cout << "Tr[i]" << Tr[i] << std::endl;
|
- |
|
160 |
std::cout << std::endl;
|
127 |
}
|
161 |
}
|
128 |
|
162 |
|
- |
|
163 |
// determine the transformation from rotation stage to camera 0
|
129 |
cvtools::fitSixDofData(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
|
164 |
cvtools::fitSixDofData(Rr, Tr, Rc, Tc, cal.Rr, cal.Tr);
|
- |
|
165 |
|
- |
|
166 |
for(int i=0; i<Rc.size(); i++){
|
- |
|
167 |
|
- |
|
168 |
// cv::Matx33f a = cal.Rr*Rc[i];
|
- |
|
169 |
// cv::Matx33f b = Rr[i];
|
- |
|
170 |
|
- |
|
171 |
// std::cout << "a:" << a << std::endl;
|
- |
|
172 |
// std::cout << "b:" << b << std::endl;
|
- |
|
173 |
|
- |
|
174 |
cv::Vec3f a = cal.Rr*Tr[i]+cal.Tr;
|
- |
|
175 |
cv::Vec3f b = Tc[i];
|
- |
|
176 |
|
- |
|
177 |
std::cout << "a:" << a << std::endl;
|
- |
|
178 |
std::cout << "b:" << b << std::endl;
|
- |
|
179 |
}
|
- |
|
180 |
cv::Mat rrvec;
|
- |
|
181 |
cv::Rodrigues(cal.Rr, rrvec);
|
- |
|
182 |
std::cout << "rrvec:" << rrvec << std::endl;
|
130 |
|
183 |
|
131 |
// Print to std::cout
|
184 |
// Print to std::cout
|
132 |
cal.print();
|
185 |
cal.print();
|
133 |
|
186 |
|
134 |
// save to (reentrant qsettings object)
|
187 |
// save to (reentrant qsettings object)
|
135 |
QSettings settings;
|
- |
|
136 |
settings.setValue("calibration", QVariant::fromValue(cal));
|
188 |
settings.setValue("calibration/parameters", QVariant::fromValue(cal));
|
137 |
|
189 |
|
138 |
emit done();
|
190 |
emit done();
|
139 |
|
191 |
|
140 |
}
|
192 |
}
|