Rev 29 | Rev 33 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include "SMCalibrationWorker.h"
#include "SMCalibrationParameters.h"
#include "cvtools.h"
#include <QSettings>
void SMCalibrationWorker::performCalibration(std::vector<SMCalibrationSet> calibrationData){
// Number of saddle points on calibration pattern
cv::Size patternSize(10, 9);
int nSets = calibrationData.size();
std::vector< std::vector<cv::Point2f> > qc0, qc1;
std::vector<float> angles;
// Loop through calibration sets
for(int i=0; i<nSets; i++){
SMCalibrationSet SMCalibrationSetI = calibrationData[i];
if(!SMCalibrationSetI.checked)
continue;
// Camera 0
std::vector<cv::Point2f> qci0;
// Extract checker corners
bool success0 = cv::findChessboardCorners(SMCalibrationSetI.frame0, patternSize, qci0, cv::CALIB_CB_ADAPTIVE_THRESH);
if(success0){
cv::Mat gray;
cv::cvtColor(SMCalibrationSetI.frame0, gray, CV_RGB2GRAY);
cv::cornerSubPix(gray, qci0, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
// Draw colored chessboard
SMCalibrationSetI.frame0Result = SMCalibrationSetI.frame0.clone();
cv::drawChessboardCorners(SMCalibrationSetI.frame0Result, patternSize, qci0, success0);
}
emit newFrameResult(i, 0, success0, SMCalibrationSetI.frame0Result);
// Camera 1
std::vector<cv::Point2f> qci1;
// Extract checker corners
bool success1 = cv::findChessboardCorners(SMCalibrationSetI.frame1, patternSize, qci1, cv::CALIB_CB_ADAPTIVE_THRESH);
if(success1){
cv::Mat gray;
cv::cvtColor(SMCalibrationSetI.frame1, gray, CV_RGB2GRAY);
cv::cornerSubPix(gray, qci1, cv::Size(5, 5), cv::Size(-1, -1),cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.001));
// Draw colored chessboard
SMCalibrationSetI.frame1Result = SMCalibrationSetI.frame1.clone();
cv::drawChessboardCorners(SMCalibrationSetI.frame1Result, patternSize, qci1, success1);
}
emit newFrameResult(i, 1, success1, SMCalibrationSetI.frame1Result);
SMCalibrationSetI.success = success0 && success1;
// Add to whole set
if(SMCalibrationSetI.success){
qc0.push_back(qci0);
qc1.push_back(qci1);
angles.push_back(SMCalibrationSetI.rotationAngle);
}
// Show progress
emit newSetProcessed(i);
}
int nValidSets = qc0.size();
if(nValidSets < 2){
std::cerr << "Not enough valid calibration sequences!" << std::endl;
emit done();
return;
}
// Generate world object coordinates [mm]
std::vector<cv::Point3f> Qi;
for (int h=0; h<patternSize.height; h++)
for (int w=0; w<patternSize.width; w++)
Qi.push_back(cv::Point3f(5 * w, 5* h, 0.0)); // 5mm chess field size
std::vector< std::vector<cv::Point3f> > Q;
for(int i=0; i<qc0.size(); i++)
Q.push_back(Qi);
// calibrate the cameras
SMCalibrationParameters cal;
cal.frameWidth = calibrationData[0].frame0.cols;
cal.frameHeight = calibrationData[0].frame0.rows;
cv::Size frameSize(cal.frameWidth, cal.frameHeight);
int flags = 0; //cv::CALIB_FIX_K3;
std::vector<cv::Vec3f> cam_rvecs0, cam_tvecs0;
cal.cam0_error = cv::calibrateCamera(Q, qc0, frameSize, cal.K0, cal.k0, cam_rvecs0, cam_tvecs0, flags);
std::vector<cv::Vec3f> cam_rvecs1, cam_tvecs1;
cal.cam1_error = cv::calibrateCamera(Q, qc1, frameSize, cal.K1, cal.k1, cam_rvecs1, cam_tvecs1, flags);
// stereo calibration (fix K0, K1, k0, k1)
int flags_stereo = cv::CALIB_FIX_INTRINSIC;
cal.stereo_error = cv::stereoCalibrate(Q, qc0, qc1, cal.K0, cal.k0, cal.K1, cal.k1,
frameSize, cal.R1, cal.T1, cal.E, cal.F,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 50, DBL_EPSILON),
flags_stereo);
// calibrate rotation axis
std::vector<cv::Matx33f> Rc(nValidSets - 1); // rotations/translations of the checkerboard in camera 0 reference frame
std::vector<cv::Vec3f> Tc(nValidSets - 1);
std::vector<cv::Matx33f> Rr(nValidSets - 1); // in rotation stage reference frame
std::vector<cv::Vec3f> Tr(nValidSets - 1);
for(int i=0; i<nValidSets-1; i++){
// relative transformations in camera
cv::Matx33f cRw1, cRw2;
cv::Rodrigues(cam_rvecs0[i], cRw1);
cv::Rodrigues(cam_rvecs0[i+1], cRw2);
cv::Vec3f cTw1 = cam_tvecs0[i];
cv::Vec3f cTw2 = cam_tvecs0[i+1];
cv::composeRT(cRw1, cTw1, cRw2.t(), -cRw2.t()*cTw2, Rc[i], Tc[i]);
// relative transformations in rotation stage
// we define the rotation axis to be in origo, pointing in positive y direction
float angleRadians = angles[i]/180.0*M_PI;
cv::Vec3f rot_rvec(0.0, angleRadians, 0.0);
cv::Rodrigues(rot_rvec, Rr[i]);
Tr[i] = 0.0;
}
cvtools::fitSixDofData(Rc, Tc, Rr, Tr, cal.Rr, cal.Tr);
// Print to std::cout
cal.print();
// save to (reentrant qsettings object)
QSettings settings;
settings.setValue("calibration", QVariant::fromValue(cal));
emit done();
}