Subversion Repositories seema-scanner

Rev

Rev 169 | Rev 182 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 169 Rev 180
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
5
#include "AlgorithmGrayCodeMax.h"
5
#include "AlgorithmGrayCodeMax.h"
6
#include "AlgorithmPhaseShiftTwoFreq.h"
6
#include "AlgorithmPhaseShiftTwoFreq.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
8
#include "AlgorithmLineShift.h"
8
#include "AlgorithmLineShift.h"
9
 
9
 
10
#include <QCoreApplication>
10
#include <QCoreApplication>
11
#include <QSettings>
11
#include <QSettings>
12
 
12
 
13
#include <iostream>
13
#include <iostream>
14
#include <opencv2/opencv.hpp>
14
#include <opencv2/opencv.hpp>
15
 
15
 
16
#include "cvtools.h"
16
#include "cvtools.h"
-
 
17
#include <opencv2/core/eigen.hpp>
17
 
18
 
18
#include <pcl/filters/statistical_outlier_removal.h>
19
#include <pcl/filters/statistical_outlier_removal.h>
19
#include <pcl/io/pcd_io.h>
20
#include <pcl/io/pcd_io.h>
20
#include <pcl/features/normal_3d.h>
21
#include <pcl/features/normal_3d.h>
-
 
22
#include <pcl/common/transforms.h>
21
 
23
 
22
 
24
 
23
void SMReconstructionWorker::setup(){
25
void SMReconstructionWorker::setup(){
24
 
26
 
25
 
27
 
26
}
28
}
27
 
29
 
28
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
30
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
29
 
31
 
30
    QSettings settings;
32
    QSettings settings;
31
 
33
 
32
    // Get current calibration
34
    // Get current calibration
33
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
35
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
34
 
36
 
35
    // Create Algorithm
37
    // Create Algorithm
36
    QString codec = frameSequence.codec;
38
    QString codec = frameSequence.codec;
37
    int resX = settings.value("projector/resX").toInt();
39
    int resX = settings.value("projector/resX").toInt();
38
    int resY = settings.value("projector/resY").toInt();
40
    int resY = settings.value("projector/resY").toInt();
39
 
41
 
40
    if(codec == "GrayCode")
42
    if(codec == "GrayCode")
41
        algorithm = new AlgorithmGrayCode(resX, resY);
43
        algorithm = new AlgorithmGrayCode(resX, resY);
42
    else if(codec == "GrayCodeHorzVert")
44
    else if(codec == "GrayCodeHorzVert")
43
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
45
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
44
    else if(codec == "GrayCodeMax")
46
    else if(codec == "GrayCodeMax")
45
        algorithm = new AlgorithmGrayCodeMax(resX, resY);
47
        algorithm = new AlgorithmGrayCodeMax(resX, resY);
46
    else if(codec == "PhaseShiftTwoFreq")
48
    else if(codec == "PhaseShiftTwoFreq")
47
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
49
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
48
    else if(codec == "PhaseShiftThreeFreq")
50
    else if(codec == "PhaseShiftThreeFreq")
49
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
51
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
50
    else if(codec == "LineShift")
52
    else if(codec == "LineShift")
51
        algorithm = new AlgorithmLineShift(resX, resY);
53
        algorithm = new AlgorithmLineShift(resX, resY);
52
    else
54
    else
53
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
55
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
54
 
56
 
55
    time.start();
57
    time.start();
56
 
58
 
57
    // Get 3D Points
59
    // Get 3D Points
58
    std::vector<cv::Point3f> Q;
60
    std::vector<cv::Point3f> Q;
59
    std::vector<cv::Vec3b> color;
61
    std::vector<cv::Vec3b> color;
60
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
62
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
61
 
63
 
62
    // Convert point cloud to PCL format
64
    // Convert point cloud to PCL format
63
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
65
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
64
 
66
 
65
    pointCloudPCL->width = Q.size();
67
    pointCloudPCL->width = Q.size();
66
    pointCloudPCL->height = 1;
68
    pointCloudPCL->height = 1;
67
    pointCloudPCL->is_dense = true;
69
    pointCloudPCL->is_dense = true;
68
 
70
 
69
    pointCloudPCL->points.resize(Q.size());
71
    pointCloudPCL->points.resize(Q.size());
70
 
72
 
71
    for(unsigned int i=0; i<Q.size(); i++){
73
    for(unsigned int i=0; i<Q.size(); i++){
72
        pcl::PointXYZRGBNormal point;
74
        pcl::PointXYZRGBNormal point;
73
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
75
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
74
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
76
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
75
        pointCloudPCL->points[i] = point;
77
        pointCloudPCL->points[i] = point;
76
    }
78
    }
77
 
79
 
-
 
80
 
-
 
81
 
-
 
82
 
-
 
83
 
-
 
84
//    // Transform point cloud to rotation axis coordinate system
-
 
85
//    cv::Mat TRCV(3, 4, CV_32F);
-
 
86
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
-
 
87
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
-
 
88
//    Eigen::Affine3f TR;
-
 
89
//    cv::cv2eigen(TRCV, TR.matrix());
-
 
90
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
-
 
91
 
-
 
92
 
-
 
93
 
-
 
94
 
78
//    // Estimate surface normals
95
//    // Estimate surface normals
79
    // This is much to slow to leave it on by default
96
    // This is much to slow to leave it on by default
80
//    pcl::NormalEstimation<pcl::PointXYZRGBNormal, pcl::PointXYZRGBNormal> ne;
97
//    pcl::NormalEstimation<pcl::PointXYZRGBNormal, pcl::PointXYZRGBNormal> ne;
81
//    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCLCopy(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
98
//    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCLCopy(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
82
//    pcl::copyPointCloud(*pointCloudPCL, *pointCloudPCLCopy);
99
//    pcl::copyPointCloud(*pointCloudPCL, *pointCloudPCLCopy);
83
//    //ne.setKSearch(10);
100
//    //ne.setKSearch(10);
84
//    ne.setRadiusSearch(0.5);
101
//    ne.setRadiusSearch(0.5);
85
//    ne.setViewPoint(0.0, 0.0, 0.0);
102
//    ne.setViewPoint(0.0, 0.0, 0.0);
86
//    ne.setInputCloud(pointCloudPCLCopy);
103
//    ne.setInputCloud(pointCloudPCLCopy);
87
//    ne.compute(*pointCloudPCL);
104
//    ne.compute(*pointCloudPCL);
88
 
105
 
89
    // Assemble SMPointCloud data structure
106
    // Assemble SMPointCloud data structure
90
    SMPointCloud smPointCloud;
107
    SMPointCloud smPointCloud;
91
    smPointCloud.id = frameSequence.id;
108
    smPointCloud.id = frameSequence.id;
92
    smPointCloud.pointCloud = pointCloudPCL;
109
    smPointCloud.pointCloud = pointCloudPCL;
93
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
110
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
94
 
111
 
95
    // Determine transform in world (camera0) coordinate system
112
    // Determine transform in world (camera0) coordinate system
96
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
113
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
97
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
114
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
98
    cv::Mat R;
115
    cv::Mat R;
99
    cv::Rodrigues(rot_rvec, R);
116
    cv::Rodrigues(rot_rvec, R);
100
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
117
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
101
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
118
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
102
 
119
 
-
 
120
 
-
 
121
//    // Determine transform in world (camera0) coordinate system
-
 
122
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
-
 
123
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
-
 
124
//    cv::Mat R;
-
 
125
//    cv::Rodrigues(rot_rvec, R);
-
 
126
//    smPointCloud.R = cv::Matx33f(R);
-
 
127
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
-
 
128
 
-
 
129
 
-
 
130
 
-
 
131
 
103
    // Emit result
132
    // Emit result
104
    emit newPointCloud(smPointCloud);
133
    emit newPointCloud(smPointCloud);
105
 
134
 
106
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
135
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
107
 
136
 
108
}
137
}
109
 
138
 
110
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
139
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
111
 
140
 
112
    // Process sequentially
141
    // Process sequentially
113
    for(unsigned int i=0; i<frameSequences.size(); i++){
142
    for(unsigned int i=0; i<frameSequences.size(); i++){
114
        reconstructPointCloud(frameSequences[i]);
143
        reconstructPointCloud(frameSequences[i]);
115
    }
144
    }
116
 
145
 
117
}
146
}
118
 
147
 
119
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
148
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
120
 
149
 
121
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
150
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
122
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
151
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
123
 
152
 
124
    cv::Mat temp(3,4,CV_32F);
153
    cv::Mat temp(3,4,CV_32F);
125
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
154
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
126
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
155
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
127
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
156
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
128
 
157
 
129
    cv::Mat QMatHomogenous, QMat;
158
    cv::Mat QMatHomogenous, QMat;
130
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
159
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
131
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
160
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
132
    cvtools::matToPoints3f(QMat, Q);
161
    cvtools::matToPoints3f(QMat, Q);
133
 
162
 
134
 
163
 
135
}
164
}
136
 
165