Subversion Repositories seema-scanner

Rev

Rev 183 | Rev 192 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 183 Rev 185
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
6
#include "AlgorithmPhaseShiftThreeFreq.h"
6
#include "AlgorithmPhaseShiftThreeFreq.h"
7
#include "AlgorithmLineShift.h"
7
#include "AlgorithmLineShift.h"
8
 
8
 
9
#include <QCoreApplication>
9
#include <QCoreApplication>
10
#include <QSettings>
10
#include <QSettings>
11
 
11
 
12
#include <iostream>
12
#include <iostream>
13
#include <opencv2/opencv.hpp>
13
#include <opencv2/opencv.hpp>
14
 
14
 
15
#include "cvtools.h"
15
#include "cvtools.h"
16
#include <opencv2/core/eigen.hpp>
16
#include <opencv2/core/eigen.hpp>
17
 
17
 
18
#include <pcl/filters/statistical_outlier_removal.h>
18
#include <pcl/filters/statistical_outlier_removal.h>
19
#include <pcl/io/pcd_io.h>
19
#include <pcl/io/pcd_io.h>
20
#include <pcl/features/normal_3d.h>
20
#include <pcl/features/normal_3d.h>
-
 
21
#include <pcl/features/normal_3d_omp.h>
21
#include <pcl/common/transforms.h>
22
#include <pcl/common/transforms.h>
22
 
23
 
23
 
24
 
24
void SMReconstructionWorker::setup(){
25
void SMReconstructionWorker::setup(){
25
 
26
 
26
 
27
 
27
}
28
}
28
 
29
 
29
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
30
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
30
 
31
 
31
    QSettings settings;
32
    QSettings settings;
32
 
33
 
33
    // Get current calibration
34
    // Get current calibration
34
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
35
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
35
 
36
 
36
    // Create Algorithm
37
    // Create Algorithm
37
    QString codec = frameSequence.codec;
38
    QString codec = frameSequence.codec;
38
    int resX = settings.value("projector/resX").toInt();
39
    int resX = settings.value("projector/resX").toInt();
39
    int resY = settings.value("projector/resY").toInt();
40
    int resY = settings.value("projector/resY").toInt();
40
 
41
 
41
    if(codec == "GrayCode")
42
    if(codec == "GrayCode")
42
        algorithm = new AlgorithmGrayCode(resX, resY);
43
        algorithm = new AlgorithmGrayCode(resX, resY);
43
    else if(codec == "GrayCodeHorzVert")
44
    else if(codec == "GrayCodeHorzVert")
44
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
45
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
45
    else if(codec == "PhaseShiftTwoFreq")
46
    else if(codec == "PhaseShiftTwoFreq")
46
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
47
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
47
    else if(codec == "PhaseShiftThreeFreq")
48
    else if(codec == "PhaseShiftThreeFreq")
48
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
49
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
49
    else if(codec == "LineShift")
50
    else if(codec == "LineShift")
50
        algorithm = new AlgorithmLineShift(resX, resY);
51
        algorithm = new AlgorithmLineShift(resX, resY);
51
    else
52
    else
52
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
53
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
53
 
54
 
54
    time.start();
55
    time.start();
55
 
56
 
56
    // Get 3D Points
57
    // Get 3D Points
57
    std::vector<cv::Point3f> Q;
58
    std::vector<cv::Point3f> Q;
58
    std::vector<cv::Vec3b> color;
59
    std::vector<cv::Vec3b> color;
59
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
60
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
60
 
61
 
61
    // Convert point cloud to PCL format
62
    // Convert point cloud to PCL format
62
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
63
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
63
 
64
 
64
    pointCloudPCL->width = Q.size();
65
    pointCloudPCL->width = Q.size();
65
    pointCloudPCL->height = 1;
66
    pointCloudPCL->height = 1;
66
    pointCloudPCL->is_dense = true;
67
    pointCloudPCL->is_dense = true;
67
 
68
 
68
    pointCloudPCL->points.resize(Q.size());
69
    pointCloudPCL->points.resize(Q.size());
69
 
70
 
70
    for(unsigned int i=0; i<Q.size(); i++){
71
    for(unsigned int i=0; i<Q.size(); i++){
71
        pcl::PointXYZRGBNormal point;
72
        pcl::PointXYZRGBNormal point;
72
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
73
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
73
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
74
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
74
        pointCloudPCL->points[i] = point;
75
        pointCloudPCL->points[i] = point;
75
    }
76
    }
76
 
77
 
77
//    // Transform point cloud to rotation axis coordinate system
78
//    // Transform point cloud to rotation axis coordinate system
78
//    cv::Mat TRCV(3, 4, CV_32F);
79
//    cv::Mat TRCV(3, 4, CV_32F);
79
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
80
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
80
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
81
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
81
//    Eigen::Affine3f TR;
82
//    Eigen::Affine3f TR;
82
//    cv::cv2eigen(TRCV, TR.matrix());
83
//    cv::cv2eigen(TRCV, TR.matrix());
83
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
84
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
84
 
85
 
85
    // Estimate surface normals
86
//    // Estimate surface normals (does not produce proper normals...)
86
    std::cout << "Estimating normals..." << std::endl;
87
//    std::cout << "Estimating normals..." << std::endl;
-
 
88
//    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
87
    // This is much too slow to leave it on by default
89
//    pcl::copyPointCloud(*pointCloudPCL, *points);
-
 
90
//    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
88
    pcl::NormalEstimation<pcl::PointXYZRGBNormal, pcl::PointXYZRGBNormal> ne;
91
//    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
89
//    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCLCopy(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
92
//    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
90
//    pcl::copyPointCloud(*pointCloudPCL, *pointCloudPCLCopy);
93
//    tree->setInputCloud(points);
91
    ne.setKSearch(10);
94
//    ne.setSearchMethod(tree);
92
    //ne.setRadiusSearch(0.5);
95
//    ne.setRadiusSearch(1.0);
-
 
96
//    //ne.setKSearch(50);
93
    ne.setViewPoint(0.0, 0.0, 0.0);
97
//    ne.setViewPoint(0.0, 0.0, 0.0);
94
    ne.setInputCloud(pointCloudPCL);
98
//    ne.setInputCloud(points);
95
    ne.compute(*pointCloudPCL);
99
//    ne.compute(*normals);
-
 
100
//    pcl::copyPointCloud(*normals, *pointCloudPCL);
96
 
101
 
97
    // Assemble SMPointCloud data structure
102
    // Assemble SMPointCloud data structure
98
    SMPointCloud smPointCloud;
103
    SMPointCloud smPointCloud;
99
    smPointCloud.id = frameSequence.id;
104
    smPointCloud.id = frameSequence.id;
100
    smPointCloud.pointCloud = pointCloudPCL;
105
    smPointCloud.pointCloud = pointCloudPCL;
101
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
106
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
102
 
107
 
103
    // Determine transform in world (camera0) coordinate system
108
    // Determine transform in world (camera0) coordinate system
104
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
109
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
105
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
110
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
106
    cv::Mat R;
111
    cv::Mat R;
107
    cv::Rodrigues(rot_rvec, R);
112
    cv::Rodrigues(rot_rvec, R);
108
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
113
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
109
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
114
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
110
 
115
 
111
 
116
 
112
//    // Determine transform in world (camera0) coordinate system
117
//    // Determine transform in world (camera0) coordinate system
113
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
118
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
114
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
119
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
115
//    cv::Mat R;
120
//    cv::Mat R;
116
//    cv::Rodrigues(rot_rvec, R);
121
//    cv::Rodrigues(rot_rvec, R);
117
//    smPointCloud.R = cv::Matx33f(R);
122
//    smPointCloud.R = cv::Matx33f(R);
118
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
123
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
119
 
124
 
120
    // Emit result
125
    // Emit result
121
    emit newPointCloud(smPointCloud);
126
    emit newPointCloud(smPointCloud);
122
 
127
 
123
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
128
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
124
}
129
}
125
 
130
 
126
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
131
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
127
 
132
 
128
    // Process sequentially
133
    // Process sequentially
129
    for(unsigned int i=0; i<frameSequences.size(); i++){
134
    for(unsigned int i=0; i<frameSequences.size(); i++){
130
        reconstructPointCloud(frameSequences[i]);
135
        reconstructPointCloud(frameSequences[i]);
131
    }
136
    }
132
 
137
 
133
}
138
}
134
 
139
 
135
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
140
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
136
 
141
 
137
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
142
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
138
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
143
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
139
 
144
 
140
    cv::Mat temp(3,4,CV_32F);
145
    cv::Mat temp(3,4,CV_32F);
141
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
146
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
142
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
147
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
143
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
148
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
144
 
149
 
145
    cv::Mat QMatHomogenous, QMat;
150
    cv::Mat QMatHomogenous, QMat;
146
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
151
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
147
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
152
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
148
    cvtools::matToPoints3f(QMat, Q);
153
    cvtools::matToPoints3f(QMat, Q);
149
 
154
 
150
 
155
 
151
}
156
}
152
 
157