Subversion Repositories seema-scanner

Rev

Rev 185 | Rev 200 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 185 Rev 192
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
6
#include "AlgorithmPhaseShiftThreeFreq.h"
6
#include "AlgorithmPhaseShiftThreeFreq.h"
-
 
7
#include "AlgorithmPhaseShiftEmbedded.h"
7
#include "AlgorithmLineShift.h"
8
#include "AlgorithmLineShift.h"
8
 
9
 
9
#include <QCoreApplication>
10
#include <QCoreApplication>
10
#include <QSettings>
11
#include <QSettings>
11
 
12
 
12
#include <iostream>
13
#include <iostream>
13
#include <opencv2/opencv.hpp>
14
#include <opencv2/opencv.hpp>
14
 
15
 
15
#include "cvtools.h"
16
#include "cvtools.h"
16
#include <opencv2/core/eigen.hpp>
17
#include <opencv2/core/eigen.hpp>
17
 
18
 
18
#include <pcl/filters/statistical_outlier_removal.h>
19
#include <pcl/filters/statistical_outlier_removal.h>
19
#include <pcl/io/pcd_io.h>
20
#include <pcl/io/pcd_io.h>
20
#include <pcl/features/normal_3d.h>
21
#include <pcl/features/normal_3d.h>
21
#include <pcl/features/normal_3d_omp.h>
22
#include <pcl/features/normal_3d_omp.h>
22
#include <pcl/common/transforms.h>
23
#include <pcl/common/transforms.h>
23
 
24
 
24
 
25
 
25
void SMReconstructionWorker::setup(){
26
void SMReconstructionWorker::setup(){
26
 
27
 
27
 
28
 
28
}
29
}
29
 
30
 
30
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
31
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
31
 
32
 
32
    QSettings settings;
33
    QSettings settings;
33
 
34
 
34
    // Get current calibration
35
    // Get current calibration
35
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
36
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
36
 
37
 
37
    // Create Algorithm
38
    // Create Algorithm
38
    QString codec = frameSequence.codec;
39
    QString codec = frameSequence.codec;
39
    int resX = settings.value("projector/resX").toInt();
40
    int resX = settings.value("projector/resX").toInt();
40
    int resY = settings.value("projector/resY").toInt();
41
    int resY = settings.value("projector/resY").toInt();
41
 
42
 
42
    if(codec == "GrayCode")
43
    if(codec == "GrayCode")
43
        algorithm = new AlgorithmGrayCode(resX, resY);
44
        algorithm = new AlgorithmGrayCode(resX, resY);
44
    else if(codec == "GrayCodeHorzVert")
45
    else if(codec == "GrayCodeHorzVert")
45
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
46
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
46
    else if(codec == "PhaseShiftTwoFreq")
47
    else if(codec == "PhaseShiftTwoFreq")
47
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
48
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
48
    else if(codec == "PhaseShiftThreeFreq")
49
    else if(codec == "PhaseShiftThreeFreq")
49
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
50
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
-
 
51
    else if(codec == "PhaseShiftEmbedded")
-
 
52
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
50
    else if(codec == "LineShift")
53
    else if(codec == "LineShift")
51
        algorithm = new AlgorithmLineShift(resX, resY);
54
        algorithm = new AlgorithmLineShift(resX, resY);
52
    else
55
    else
53
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
56
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
54
 
57
 
55
    time.start();
58
    time.start();
56
 
59
 
57
    // Get 3D Points
60
    // Get 3D Points
58
    std::vector<cv::Point3f> Q;
61
    std::vector<cv::Point3f> Q;
59
    std::vector<cv::Vec3b> color;
62
    std::vector<cv::Vec3b> color;
60
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
63
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
61
 
64
 
62
    // Convert point cloud to PCL format
65
    // Convert point cloud to PCL format
63
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
66
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
64
 
67
 
65
    pointCloudPCL->width = Q.size();
68
    pointCloudPCL->width = Q.size();
66
    pointCloudPCL->height = 1;
69
    pointCloudPCL->height = 1;
67
    pointCloudPCL->is_dense = true;
70
    pointCloudPCL->is_dense = true;
68
 
71
 
69
    pointCloudPCL->points.resize(Q.size());
72
    pointCloudPCL->points.resize(Q.size());
70
 
73
 
71
    for(unsigned int i=0; i<Q.size(); i++){
74
    for(unsigned int i=0; i<Q.size(); i++){
72
        pcl::PointXYZRGBNormal point;
75
        pcl::PointXYZRGBNormal point;
73
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
76
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
74
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
77
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
75
        pointCloudPCL->points[i] = point;
78
        pointCloudPCL->points[i] = point;
76
    }
79
    }
77
 
80
 
78
//    // Transform point cloud to rotation axis coordinate system
81
//    // Transform point cloud to rotation axis coordinate system
79
//    cv::Mat TRCV(3, 4, CV_32F);
82
//    cv::Mat TRCV(3, 4, CV_32F);
80
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
83
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
81
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
84
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
82
//    Eigen::Affine3f TR;
85
//    Eigen::Affine3f TR;
83
//    cv::cv2eigen(TRCV, TR.matrix());
86
//    cv::cv2eigen(TRCV, TR.matrix());
84
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
87
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
85
 
88
 
86
//    // Estimate surface normals (does not produce proper normals...)
89
//    // Estimate surface normals (does not produce proper normals...)
87
//    std::cout << "Estimating normals..." << std::endl;
90
//    std::cout << "Estimating normals..." << std::endl;
88
//    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
91
//    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
89
//    pcl::copyPointCloud(*pointCloudPCL, *points);
92
//    pcl::copyPointCloud(*pointCloudPCL, *points);
90
//    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
93
//    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
91
//    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
94
//    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
92
//    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
95
//    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
93
//    tree->setInputCloud(points);
96
//    tree->setInputCloud(points);
94
//    ne.setSearchMethod(tree);
97
//    ne.setSearchMethod(tree);
95
//    ne.setRadiusSearch(1.0);
98
//    ne.setRadiusSearch(1.0);
96
//    //ne.setKSearch(50);
99
//    //ne.setKSearch(50);
97
//    ne.setViewPoint(0.0, 0.0, 0.0);
100
//    ne.setViewPoint(0.0, 0.0, 0.0);
98
//    ne.setInputCloud(points);
101
//    ne.setInputCloud(points);
99
//    ne.compute(*normals);
102
//    ne.compute(*normals);
100
//    pcl::copyPointCloud(*normals, *pointCloudPCL);
103
//    pcl::copyPointCloud(*normals, *pointCloudPCL);
101
 
104
 
102
    // Assemble SMPointCloud data structure
105
    // Assemble SMPointCloud data structure
103
    SMPointCloud smPointCloud;
106
    SMPointCloud smPointCloud;
104
    smPointCloud.id = frameSequence.id;
107
    smPointCloud.id = frameSequence.id;
105
    smPointCloud.pointCloud = pointCloudPCL;
108
    smPointCloud.pointCloud = pointCloudPCL;
106
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
109
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
107
 
110
 
108
    // Determine transform in world (camera0) coordinate system
111
    // Determine transform in world (camera0) coordinate system
109
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
112
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
110
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
113
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
111
    cv::Mat R;
114
    cv::Mat R;
112
    cv::Rodrigues(rot_rvec, R);
115
    cv::Rodrigues(rot_rvec, R);
113
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
116
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
114
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
117
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
115
 
118
 
116
 
119
 
117
//    // Determine transform in world (camera0) coordinate system
120
//    // Determine transform in world (camera0) coordinate system
118
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
121
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
119
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
122
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
120
//    cv::Mat R;
123
//    cv::Mat R;
121
//    cv::Rodrigues(rot_rvec, R);
124
//    cv::Rodrigues(rot_rvec, R);
122
//    smPointCloud.R = cv::Matx33f(R);
125
//    smPointCloud.R = cv::Matx33f(R);
123
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
126
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
124
 
127
 
125
    // Emit result
128
    // Emit result
126
    emit newPointCloud(smPointCloud);
129
    emit newPointCloud(smPointCloud);
127
 
130
 
128
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
131
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
129
}
132
}
130
 
133
 
131
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
134
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
132
 
135
 
133
    // Process sequentially
136
    // Process sequentially
134
    for(unsigned int i=0; i<frameSequences.size(); i++){
137
    for(unsigned int i=0; i<frameSequences.size(); i++){
135
        reconstructPointCloud(frameSequences[i]);
138
        reconstructPointCloud(frameSequences[i]);
136
    }
139
    }
137
 
140
 
138
}
141
}
139
 
142
 
140
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
143
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
141
 
144
 
142
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
145
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
143
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
146
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
144
 
147
 
145
    cv::Mat temp(3,4,CV_32F);
148
    cv::Mat temp(3,4,CV_32F);
146
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
149
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
147
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
150
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
148
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
151
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
149
 
152
 
150
    cv::Mat QMatHomogenous, QMat;
153
    cv::Mat QMatHomogenous, QMat;
151
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
154
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
152
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
155
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
153
    cvtools::matToPoints3f(QMat, Q);
156
    cvtools::matToPoints3f(QMat, Q);
154
 
157
 
155
 
158
 
156
}
159
}
157
 
160