Subversion Repositories seema-scanner

Rev

Rev 192 | Rev 207 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 192 Rev 200
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
-
 
6
#include "AlgorithmPhaseShiftTwoFreqHorzVert.h"
6
#include "AlgorithmPhaseShiftThreeFreq.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
7
#include "AlgorithmPhaseShiftEmbedded.h"
8
#include "AlgorithmPhaseShiftEmbedded.h"
8
#include "AlgorithmLineShift.h"
9
#include "AlgorithmLineShift.h"
9
 
10
 
10
#include <QCoreApplication>
11
#include <QCoreApplication>
11
#include <QSettings>
12
#include <QSettings>
12
 
13
 
13
#include <iostream>
14
#include <iostream>
14
#include <opencv2/opencv.hpp>
15
#include <opencv2/opencv.hpp>
15
 
16
 
16
#include "cvtools.h"
17
#include "cvtools.h"
17
#include <opencv2/core/eigen.hpp>
18
#include <opencv2/core/eigen.hpp>
18
 
19
 
19
#include <pcl/filters/statistical_outlier_removal.h>
20
#include <pcl/filters/statistical_outlier_removal.h>
20
#include <pcl/io/pcd_io.h>
21
#include <pcl/io/pcd_io.h>
21
#include <pcl/features/normal_3d.h>
22
#include <pcl/features/normal_3d.h>
22
#include <pcl/features/normal_3d_omp.h>
23
#include <pcl/features/normal_3d_omp.h>
23
#include <pcl/common/transforms.h>
24
#include <pcl/common/transforms.h>
24
 
25
 
25
 
26
 
26
void SMReconstructionWorker::setup(){
27
void SMReconstructionWorker::setup(){
27
 
28
 
28
 
29
 
29
}
30
}
30
 
31
 
31
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
32
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
32
 
33
 
33
    QSettings settings;
34
    QSettings settings;
34
 
35
 
35
    // Get current calibration
36
    // Get current calibration
36
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
37
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
37
 
38
 
38
    // Create Algorithm
39
    // Create Algorithm
39
    QString codec = frameSequence.codec;
40
    QString codec = frameSequence.codec;
40
    int resX = settings.value("projector/resX").toInt();
41
    int resX = settings.value("projector/resX").toInt();
41
    int resY = settings.value("projector/resY").toInt();
42
    int resY = settings.value("projector/resY").toInt();
42
 
43
 
43
    if(codec == "GrayCode")
44
    if(codec == "GrayCode")
44
        algorithm = new AlgorithmGrayCode(resX, resY);
45
        algorithm = new AlgorithmGrayCode(resX, resY);
45
    else if(codec == "GrayCodeHorzVert")
46
    else if(codec == "GrayCodeHorzVert")
46
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
47
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
47
    else if(codec == "PhaseShiftTwoFreq")
48
    else if(codec == "PhaseShiftTwoFreq")
48
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
49
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
-
 
50
    else if(codec == "PhaseShiftTwoFreqHorzVert")
-
 
51
        algorithm = new AlgorithmPhaseShiftTwoFreqHorzVert(resX, resY);
49
    else if(codec == "PhaseShiftThreeFreq")
52
    else if(codec == "PhaseShiftThreeFreq")
50
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
53
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
51
    else if(codec == "PhaseShiftEmbedded")
54
    else if(codec == "PhaseShiftEmbedded")
52
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
55
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
53
    else if(codec == "LineShift")
56
    else if(codec == "LineShift")
54
        algorithm = new AlgorithmLineShift(resX, resY);
57
        algorithm = new AlgorithmLineShift(resX, resY);
55
    else
58
    else
56
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
59
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
57
 
60
 
58
    time.start();
61
    time.start();
59
 
62
 
60
    // Get 3D Points
63
    // Get 3D Points
61
    std::vector<cv::Point3f> Q;
64
    std::vector<cv::Point3f> Q;
62
    std::vector<cv::Vec3b> color;
65
    std::vector<cv::Vec3b> color;
63
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
66
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
64
 
67
 
65
    // Convert point cloud to PCL format
68
    // Convert point cloud to PCL format
66
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
69
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
67
 
70
 
68
    pointCloudPCL->width = Q.size();
71
    pointCloudPCL->width = Q.size();
69
    pointCloudPCL->height = 1;
72
    pointCloudPCL->height = 1;
70
    pointCloudPCL->is_dense = true;
73
    pointCloudPCL->is_dense = true;
71
 
74
 
72
    pointCloudPCL->points.resize(Q.size());
75
    pointCloudPCL->points.resize(Q.size());
73
 
76
 
74
    for(unsigned int i=0; i<Q.size(); i++){
77
    for(unsigned int i=0; i<Q.size(); i++){
75
        pcl::PointXYZRGBNormal point;
78
        pcl::PointXYZRGBNormal point;
76
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
79
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
77
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
80
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
78
        pointCloudPCL->points[i] = point;
81
        pointCloudPCL->points[i] = point;
79
    }
82
    }
80
 
83
 
81
//    // Transform point cloud to rotation axis coordinate system
84
//    // Transform point cloud to rotation axis coordinate system
82
//    cv::Mat TRCV(3, 4, CV_32F);
85
//    cv::Mat TRCV(3, 4, CV_32F);
83
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
86
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
84
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
87
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
85
//    Eigen::Affine3f TR;
88
//    Eigen::Affine3f TR;
86
//    cv::cv2eigen(TRCV, TR.matrix());
89
//    cv::cv2eigen(TRCV, TR.matrix());
87
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
90
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
88
 
91
 
89
//    // Estimate surface normals (does not produce proper normals...)
92
//    // Estimate surface normals (does not produce proper normals...)
90
//    std::cout << "Estimating normals..." << std::endl;
93
//    std::cout << "Estimating normals..." << std::endl;
91
//    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
94
//    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
92
//    pcl::copyPointCloud(*pointCloudPCL, *points);
95
//    pcl::copyPointCloud(*pointCloudPCL, *points);
93
//    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
96
//    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
94
//    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
97
//    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
95
//    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
98
//    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
96
//    tree->setInputCloud(points);
99
//    tree->setInputCloud(points);
97
//    ne.setSearchMethod(tree);
100
//    ne.setSearchMethod(tree);
98
//    ne.setRadiusSearch(1.0);
101
//    ne.setRadiusSearch(1.0);
99
//    //ne.setKSearch(50);
102
//    //ne.setKSearch(50);
100
//    ne.setViewPoint(0.0, 0.0, 0.0);
103
//    ne.setViewPoint(0.0, 0.0, 0.0);
101
//    ne.setInputCloud(points);
104
//    ne.setInputCloud(points);
102
//    ne.compute(*normals);
105
//    ne.compute(*normals);
103
//    pcl::copyPointCloud(*normals, *pointCloudPCL);
106
//    pcl::copyPointCloud(*normals, *pointCloudPCL);
104
 
107
 
105
    // Assemble SMPointCloud data structure
108
    // Assemble SMPointCloud data structure
106
    SMPointCloud smPointCloud;
109
    SMPointCloud smPointCloud;
107
    smPointCloud.id = frameSequence.id;
110
    smPointCloud.id = frameSequence.id;
108
    smPointCloud.pointCloud = pointCloudPCL;
111
    smPointCloud.pointCloud = pointCloudPCL;
109
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
112
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
110
 
113
 
111
    // Determine transform in world (camera0) coordinate system
114
    // Determine transform in world (camera0) coordinate system
112
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
115
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
113
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
116
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
114
    cv::Mat R;
117
    cv::Mat R;
115
    cv::Rodrigues(rot_rvec, R);
118
    cv::Rodrigues(rot_rvec, R);
116
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
119
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
117
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
120
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
118
 
121
 
119
 
122
 
120
//    // Determine transform in world (camera0) coordinate system
123
//    // Determine transform in world (camera0) coordinate system
121
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
124
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
122
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
125
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
123
//    cv::Mat R;
126
//    cv::Mat R;
124
//    cv::Rodrigues(rot_rvec, R);
127
//    cv::Rodrigues(rot_rvec, R);
125
//    smPointCloud.R = cv::Matx33f(R);
128
//    smPointCloud.R = cv::Matx33f(R);
126
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
129
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
127
 
130
 
128
    // Emit result
131
    // Emit result
129
    emit newPointCloud(smPointCloud);
132
    emit newPointCloud(smPointCloud);
130
 
133
 
131
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
134
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
132
}
135
}
133
 
136
 
134
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
137
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
135
 
138
 
136
    // Process sequentially
139
    // Process sequentially
137
    for(unsigned int i=0; i<frameSequences.size(); i++){
140
    for(unsigned int i=0; i<frameSequences.size(); i++){
138
        reconstructPointCloud(frameSequences[i]);
141
        reconstructPointCloud(frameSequences[i]);
139
    }
142
    }
140
 
143
 
141
}
144
}
142
 
145
 
143
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
146
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
144
 
147
 
145
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
148
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
146
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
149
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
147
 
150
 
148
    cv::Mat temp(3,4,CV_32F);
151
    cv::Mat temp(3,4,CV_32F);
149
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
152
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
150
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
153
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
151
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
154
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
152
 
155
 
153
    cv::Mat QMatHomogenous, QMat;
156
    cv::Mat QMatHomogenous, QMat;
154
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
157
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
155
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
158
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
156
    cvtools::matToPoints3f(QMat, Q);
159
    cvtools::matToPoints3f(QMat, Q);
157
 
160
 
158
 
161
 
159
}
162
}
160
 
163