Subversion Repositories seema-scanner

Rev

Rev 207 | Rev 225 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 207 Rev 208
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
6
#include "AlgorithmPhaseShiftTwoFreqHorzVert.h"
6
#include "AlgorithmPhaseShiftTwoFreqHorzVert.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
8
#include "AlgorithmPhaseShiftEmbedded.h"
8
#include "AlgorithmPhaseShiftEmbedded.h"
9
#include "AlgorithmLineShift.h"
9
#include "AlgorithmLineShift.h"
10
 
10
 
11
#include <QCoreApplication>
11
#include <QCoreApplication>
12
#include <QSettings>
12
#include <QSettings>
13
 
13
 
14
#include <iostream>
14
#include <iostream>
15
#include <opencv2/opencv.hpp>
15
#include <opencv2/opencv.hpp>
16
 
16
 
17
#include "cvtools.h"
17
#include "cvtools.h"
18
#include <opencv2/core/eigen.hpp>
18
#include <opencv2/core/eigen.hpp>
19
 
19
 
20
#include <pcl/filters/statistical_outlier_removal.h>
20
#include <pcl/filters/statistical_outlier_removal.h>
21
#include <pcl/io/pcd_io.h>
21
#include <pcl/io/pcd_io.h>
22
#include <pcl/features/normal_3d.h>
22
#include <pcl/features/normal_3d.h>
23
#include <pcl/features/normal_3d_omp.h>
23
#include <pcl/features/normal_3d_omp.h>
24
#include <pcl/common/transforms.h>
24
#include <pcl/common/transforms.h>
25
 
25
 
26
 
26
 
27
void SMReconstructionWorker::setup(){
27
void SMReconstructionWorker::setup(){
28
}
28
}
29
 
29
 
30
void SMReconstructionWorker::reconstructPointCloud(const SMFrameSequence &frameSequence){
30
void SMReconstructionWorker::reconstructPointCloud(const SMFrameSequence &frameSequence){
31
 
31
 
32
    QSettings settings;
32
    QSettings settings;
33
 
33
 
34
    // Get current calibration
34
    // Get current calibration
35
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
35
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
36
 
36
 
37
    // Create Algorithm
37
    // Create Algorithm
38
    QString codec = frameSequence.codec;
38
    QString codec = frameSequence.codec;
39
    int resX = settings.value("projector/resX").toInt();
39
    int resX = settings.value("projector/resX").toInt();
40
    int resY = settings.value("projector/resY").toInt();
40
    int resY = settings.value("projector/resY").toInt();
41
 
41
 
42
    if(codec == "GrayCode")
42
    if(codec == "GrayCode")
43
        algorithm = new AlgorithmGrayCode(resX, resY);
43
        algorithm = new AlgorithmGrayCode(resX, resY);
44
    else if(codec == "GrayCodeHorzVert")
44
    else if(codec == "GrayCodeHorzVert")
45
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
45
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
46
    else if(codec == "PhaseShiftTwoFreq")
46
    else if(codec == "PhaseShiftTwoFreq")
47
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
47
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
48
    else if(codec == "PhaseShiftTwoFreqHorzVert")
48
    else if(codec == "PhaseShiftTwoFreqHorzVert")
49
        algorithm = new AlgorithmPhaseShiftTwoFreqHorzVert(resX, resY);
49
        algorithm = new AlgorithmPhaseShiftTwoFreqHorzVert(resX, resY);
50
    else if(codec == "PhaseShiftThreeFreq")
50
    else if(codec == "PhaseShiftThreeFreq")
51
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
51
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
52
    else if(codec == "PhaseShiftEmbedded")
52
    else if(codec == "PhaseShiftEmbedded")
53
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
53
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
54
    else if(codec == "LineShift")
54
    else if(codec == "LineShift")
55
        algorithm = new AlgorithmLineShift(resX, resY);
55
        algorithm = new AlgorithmLineShift(resX, resY);
56
    else
56
    else{
57
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
57
        std::cerr << "SLScanWorker: invalid codec (Please set codec in preferences): " << codec.toStdString() << std::endl;
-
 
58
        return; // otherwise segfault TODO no default?
-
 
59
    }
58
 
60
 
59
    time.start();
61
    time.start();
60
 
62
 
61
    // Get 3D Points
63
    // Get 3D Points
62
    std::vector<cv::Point3f> Q;
64
    std::vector<cv::Point3f> Q;
63
    std::vector<cv::Vec3b> color;
65
    std::vector<cv::Vec3b> color;
64
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
66
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
65
 
67
 
66
    // Convert point cloud to PCL format
68
    // Convert point cloud to PCL format
67
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
69
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
68
 
70
 
69
    pointCloudPCL->width = Q.size();
71
    pointCloudPCL->width = Q.size();
70
    pointCloudPCL->height = 1;
72
    pointCloudPCL->height = 1;
71
    pointCloudPCL->is_dense = true;
73
    pointCloudPCL->is_dense = true;
72
 
74
 
73
    pointCloudPCL->points.resize(Q.size());
75
    pointCloudPCL->points.resize(Q.size());
74
 
76
 
75
    for(unsigned int i=0; i<Q.size(); i++){
77
    for(unsigned int i=0; i<Q.size(); i++){
76
        pcl::PointXYZRGBNormal point;
78
        pcl::PointXYZRGBNormal point;
77
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
79
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
78
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
80
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
79
        pointCloudPCL->points[i] = point;
81
        pointCloudPCL->points[i] = point;
80
    }
82
    }
81
 
83
 
82
    // Transform point cloud to rotation axis coordinate system
84
    // Transform point cloud to rotation axis coordinate system
83
    /*cv::Mat TRCV(3, 4, CV_32F);
85
    /*cv::Mat TRCV(3, 4, CV_32F);
84
    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
86
    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
85
    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
87
    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
86
    Eigen::Affine3f TR;
88
    Eigen::Affine3f TR;
87
    cv::cv2eigen(TRCV, TR.matrix());
89
    cv::cv2eigen(TRCV, TR.matrix());
88
    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
90
    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
89
 
91
 
90
    // Estimate surface normals (does not produce proper normals...)
92
    // Estimate surface normals (does not produce proper normals...)
91
    std::cout << "Estimating normals..." << std::endl;
93
    std::cout << "Estimating normals..." << std::endl;
92
    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
94
    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
93
    pcl::copyPointCloud(*pointCloudPCL, *points);
95
    pcl::copyPointCloud(*pointCloudPCL, *points);
94
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
96
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
95
    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
97
    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
96
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
98
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
97
    tree->setInputCloud(points);
99
    tree->setInputCloud(points);
98
    ne.setSearchMethod(tree);
100
    ne.setSearchMethod(tree);
99
    ne.setRadiusSearch(1.0);
101
    ne.setRadiusSearch(1.0);
100
    //ne.setKSearch(50);
102
    //ne.setKSearch(50);
101
    ne.setViewPoint(0.0, 0.0, 0.0);
103
    ne.setViewPoint(0.0, 0.0, 0.0);
102
    ne.setInputCloud(points);
104
    ne.setInputCloud(points);
103
    ne.compute(*normals);
105
    ne.compute(*normals);
104
    pcl::copyPointCloud(*normals, *pointCloudPCL);*/
106
    pcl::copyPointCloud(*normals, *pointCloudPCL);*/
105
 
107
 
106
    // Assemble SMPointCloud data structure
108
    // Assemble SMPointCloud data structure
107
    SMPointCloud smPointCloud;
109
    SMPointCloud smPointCloud;
108
    smPointCloud.id = frameSequence.id;
110
    smPointCloud.id = frameSequence.id;
109
    smPointCloud.pointCloud = pointCloudPCL;
111
    smPointCloud.pointCloud = pointCloudPCL;
110
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
112
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
111
 
113
 
112
    // Determine transform in world (camera0) coordinate system
114
    // Determine transform in world (camera0) coordinate system
113
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
115
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
114
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
116
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
115
    cv::Mat R;
117
    cv::Mat R;
116
    cv::Rodrigues(rot_rvec, R);
118
    cv::Rodrigues(rot_rvec, R);
117
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
119
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
118
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
120
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
119
 
121
 
120
 
122
 
121
    // Determine transform in world (camera0) coordinate system
123
    // Determine transform in world (camera0) coordinate system
122
    /*float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
124
    /*float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
123
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
125
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
124
    cv::Mat R;
126
    cv::Mat R;
125
    cv::Rodrigues(rot_rvec, R);
127
    cv::Rodrigues(rot_rvec, R);
126
    smPointCloud.R = cv::Matx33f(R);
128
    smPointCloud.R = cv::Matx33f(R);
127
    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);*/
129
    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);*/
128
 
130
 
129
    // Emit result
131
    // Emit result
130
    #pragma omp critical (CBRECOupdateUI1)
132
    #pragma omp critical (CBRECOupdateUI1)
131
    {
133
    {
132
        emit newPointCloud(smPointCloud);
134
        emit newPointCloud(smPointCloud);
133
        std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
135
        std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
-
 
136
        std::cout << "SMReconstructionWorker: " << smPointCloud.pointCloud->size() << " Points" << std::endl;
134
    }
137
    }
135
}
138
}
136
 
139
 
137
void SMReconstructionWorker::reconstructPointClouds(const std::vector<SMFrameSequence> &frameSequences){
140
void SMReconstructionWorker::reconstructPointClouds(const std::vector<SMFrameSequence> &frameSequences){
138
    // Process sequentially
141
    // Process sequentially
139
    #pragma omp parallel for
142
    #pragma omp parallel for
140
    for(unsigned int i=0; i<frameSequences.size(); i++){
143
    for(unsigned int i=0; i<frameSequences.size(); i++){
141
        if(!frameSequences[i].reconstructed) reconstructPointCloud(frameSequences[i]);
144
        if(!frameSequences[i].reconstructed) reconstructPointCloud(frameSequences[i]);
142
    }
145
    }
143
}
146
}
144
 
147
 
145
void SMReconstructionWorker::triangulate(const std::vector<cv::Point2f>& q0, const std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
148
void SMReconstructionWorker::triangulate(const std::vector<cv::Point2f>& q0, const std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
146
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
149
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
147
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
150
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
148
 
151
 
149
    cv::Mat temp(3,4,CV_32F);
152
    cv::Mat temp(3,4,CV_32F);
150
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
153
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
151
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
154
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
152
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
155
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
153
 
156
 
154
    cv::Mat QMatHomogenous, QMat;
157
    cv::Mat QMatHomogenous, QMat;
155
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
158
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
156
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
159
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
157
    cvtools::matToPoints3f(QMat, Q);
160
    cvtools::matToPoints3f(QMat, Q);
158
}
161
}
159
 
162