Subversion Repositories seema-scanner

Rev

Rev 231 | Rev 242 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 231 Rev 236
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
4
#include "AlgorithmGrayCodeHorzVert.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
5
#include "AlgorithmPhaseShiftTwoFreq.h"
6
#include "AlgorithmPhaseShiftTwoFreqHorzVert.h"
6
#include "AlgorithmPhaseShiftTwoFreqHorzVert.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
7
#include "AlgorithmPhaseShiftThreeFreq.h"
8
#include "AlgorithmPhaseShiftEmbedded.h"
8
#include "AlgorithmPhaseShiftEmbedded.h"
9
#include "AlgorithmLineShift.h"
9
#include "AlgorithmLineShift.h"
10
 
10
 
11
#include <QCoreApplication>
11
#include <QCoreApplication>
12
#include <QSettings>
12
#include <QSettings>
13
 
13
 
14
#include <iostream>
14
#include <iostream>
15
#include <opencv2/opencv.hpp>
15
#include <opencv2/opencv.hpp>
16
 
16
 
17
#include "cvtools.h"
17
#include "cvtools.h"
18
#include <opencv2/core/eigen.hpp>
18
#include <opencv2/core/eigen.hpp>
19
 
19
 
20
#include <pcl/filters/statistical_outlier_removal.h>
20
#include <pcl/filters/statistical_outlier_removal.h>
21
#include <pcl/io/pcd_io.h>
21
#include <pcl/io/pcd_io.h>
22
#include <pcl/features/normal_3d.h>
22
#include <pcl/features/normal_3d.h>
23
#include <pcl/features/normal_3d_omp.h>
23
#include <pcl/features/normal_3d_omp.h>
24
#include <pcl/common/transforms.h>
24
#include <pcl/common/transforms.h>
25
 
25
 
26
 
26
 
27
void SMReconstructionWorker::reconstructPointCloud(const SMFrameSequence &frameSequence){
27
void SMReconstructionWorker::reconstructPointCloud(const SMFrameSequence &frameSequence){
28
 
28
 
29
    QSettings settings;
29
    QSettings settings;
30
 
30
 
31
    // Get current calibration
31
    // Get current calibration
32
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
32
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
33
 
33
 
34
    // Create Algorithm
34
    // Create Algorithm
35
    QString codec = frameSequence.codec;
35
    QString codec = frameSequence.codec;
36
    unsigned int resX = settings.value("projector/resX").toInt();
36
    unsigned int resX = settings.value("projector/resX").toInt();
37
    unsigned int resY = settings.value("projector/resY").toInt();
37
    unsigned int resY = settings.value("projector/resY").toInt();
38
 
38
 
39
    if(codec == "GrayCode")
39
    if(codec == "GrayCode")
40
        algorithm = new AlgorithmGrayCode(resX, resY);
40
        algorithm = new AlgorithmGrayCode(resX, resY);
41
    else if(codec == "GrayCodeHorzVert")
41
    else if(codec == "GrayCodeHorzVert")
42
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
42
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
43
    else if(codec == "PhaseShiftTwoFreq")
43
    else if(codec == "PhaseShiftTwoFreq")
44
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
44
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
45
    else if(codec == "PhaseShiftTwoFreqHorzVert")
45
    else if(codec == "PhaseShiftTwoFreqHorzVert")
46
        algorithm = new AlgorithmPhaseShiftTwoFreqHorzVert(resX, resY);
46
        algorithm = new AlgorithmPhaseShiftTwoFreqHorzVert(resX, resY);
47
    else if(codec == "PhaseShiftThreeFreq")
47
    else if(codec == "PhaseShiftThreeFreq")
48
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
48
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
49
    else if(codec == "PhaseShiftEmbedded")
49
    else if(codec == "PhaseShiftEmbedded")
50
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
50
        algorithm = new AlgorithmPhaseShiftEmbedded(resX, resY);
51
    else if(codec == "LineShift")
51
    else if(codec == "LineShift")
52
        algorithm = new AlgorithmLineShift(resX, resY);
52
        algorithm = new AlgorithmLineShift(resX, resY);
53
    else{
53
    else{
54
        std::cerr << "SLScanWorker: invalid codec (Please set codec in preferences): " << codec.toStdString() << std::endl;
54
        std::cerr << "SLScanWorker: invalid codec (Please set codec in preferences): " << codec.toStdString() << std::endl;
55
        return; // otherwise segfault TODO no default?
55
        return; // otherwise segfault TODO no default?
56
    }
56
    }
57
 
57
 
58
    assert(frameSequence.frames0.size() == algorithm->getNPatterns());
58
    assert(frameSequence.frames0.size() == algorithm->getNPatterns());
59
    assert(frameSequence.frames1.size() == algorithm->getNPatterns());
59
    assert(frameSequence.frames1.size() == algorithm->getNPatterns());
60
 
60
 
61
    // Print OpenCV build information
61
    // Print OpenCV build information
62
    cv::setUseOptimized(true);
62
    cv::setUseOptimized(true);
63
    //std::cout << cv::getBuildInformation();
63
    std::cout << cv::getBuildInformation();
64
 
64
 
65
    time.start();
65
    time.start();
66
 
66
 
67
    // Get 3D Points
67
    // Get 3D Points
68
    std::vector<cv::Point3f> Q;
68
    std::vector<cv::Point3f> Q;
69
    std::vector<cv::Vec3b> color;
69
    std::vector<cv::Vec3b> color;
70
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
70
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
71
 
71
 
72
    // Convert point cloud to PCL format
72
    // Convert point cloud to PCL format
73
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
73
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
74
 
74
 
75
    pointCloudPCL->width = Q.size();
75
    pointCloudPCL->width = Q.size();
76
    pointCloudPCL->height = 1;
76
    pointCloudPCL->height = 1;
77
    pointCloudPCL->is_dense = true;
77
    pointCloudPCL->is_dense = true;
78
 
78
 
79
    pointCloudPCL->points.resize(Q.size());
79
    pointCloudPCL->points.resize(Q.size());
80
 
80
 
81
    for(unsigned int i=0; i<Q.size(); i++){
81
    for(unsigned int i=0; i<Q.size(); i++){
82
        pcl::PointXYZRGBNormal point;
82
        pcl::PointXYZRGBNormal point;
83
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
83
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
84
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
84
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
85
        pointCloudPCL->points[i] = point;
85
        pointCloudPCL->points[i] = point;
86
    }
86
    }
87
 
87
 
88
    // Transform point cloud to rotation axis coordinate system
88
    // Transform point cloud to rotation axis coordinate system
89
    /*cv::Mat TRCV(3, 4, CV_32F);
89
    /*cv::Mat TRCV(3, 4, CV_32F);
90
    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
90
    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
91
    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
91
    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
92
    Eigen::Affine3f TR;
92
    Eigen::Affine3f TR;
93
    cv::cv2eigen(TRCV, TR.matrix());
93
    cv::cv2eigen(TRCV, TR.matrix());
94
    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
94
    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
95
 
95
 
96
    // Estimate surface normals (does not produce proper normals...)
96
    // Estimate surface normals (does not produce proper normals...)
97
    std::cout << "Estimating normals..." << std::endl;
97
    std::cout << "Estimating normals..." << std::endl;
98
    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
98
    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
99
    pcl::copyPointCloud(*pointCloudPCL, *points);
99
    pcl::copyPointCloud(*pointCloudPCL, *points);
100
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
100
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
101
    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
101
    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
102
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
102
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
103
    tree->setInputCloud(points);
103
    tree->setInputCloud(points);
104
    ne.setSearchMethod(tree);
104
    ne.setSearchMethod(tree);
105
    ne.setRadiusSearch(1.0);
105
    ne.setRadiusSearch(1.0);
106
    //ne.setKSearch(50);
106
    //ne.setKSearch(50);
107
    ne.setViewPoint(0.0, 0.0, 0.0);
107
    ne.setViewPoint(0.0, 0.0, 0.0);
108
    ne.setInputCloud(points);
108
    ne.setInputCloud(points);
109
    ne.compute(*normals);
109
    ne.compute(*normals);
110
    pcl::copyPointCloud(*normals, *pointCloudPCL);*/
110
    pcl::copyPointCloud(*normals, *pointCloudPCL);*/
111
 
111
 
112
    // Assemble SMPointCloud data structure
112
    // Assemble SMPointCloud data structure
113
    SMPointCloud smPointCloud;
113
    SMPointCloud smPointCloud;
114
    smPointCloud.id = frameSequence.id;
114
    smPointCloud.id = frameSequence.id;
115
    smPointCloud.pointCloud = pointCloudPCL;
115
    smPointCloud.pointCloud = pointCloudPCL;
116
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
116
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
117
 
117
 
118
    // Determine transform in world (camera0) coordinate system
118
    // Determine transform in world (camera0) coordinate system
119
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
119
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
120
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
120
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
121
    cv::Mat R;
121
    cv::Mat R;
122
    cv::Rodrigues(rot_rvec, R);
122
    cv::Rodrigues(rot_rvec, R);
123
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
123
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
124
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
124
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
125
 
125
 
126
 
126
 
127
    // Determine transform in world (camera0) coordinate system
127
    // Determine transform in world (camera0) coordinate system
128
    /*float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
128
    /*float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
129
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
129
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
130
    cv::Mat R;
130
    cv::Mat R;
131
    cv::Rodrigues(rot_rvec, R);
131
    cv::Rodrigues(rot_rvec, R);
132
    smPointCloud.R = cv::Matx33f(R);
132
    smPointCloud.R = cv::Matx33f(R);
133
    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);*/
133
    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);*/
134
 
134
 
135
    // Emit result
135
    // Emit result
136
    emit newPointCloud(smPointCloud);
136
    emit newPointCloud(smPointCloud);
137
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
137
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
138
    std::cout << "SMReconstructionWorker: " << smPointCloud.pointCloud->size() << " Points" << std::endl;
138
    std::cout << "SMReconstructionWorker: " << smPointCloud.pointCloud->size() << " Points" << std::endl;
139
 
139
 
140
}
140
}
141
 
141
 
142
void SMReconstructionWorker::reconstructPointClouds(const std::vector<SMFrameSequence> &frameSequences){
142
void SMReconstructionWorker::reconstructPointClouds(const std::vector<SMFrameSequence> &frameSequences){
143
 
143
 
144
    // Process sequentially
144
    // Process sequentially
145
    #pragma omp parallel for
145
    #pragma omp parallel for
146
    for(unsigned int i=0; i<frameSequences.size(); i++){
146
    for(unsigned int i=0; i<frameSequences.size(); i++){
147
        if(!frameSequences[i].reconstructed) reconstructPointCloud(frameSequences[i]);
147
        if(!frameSequences[i].reconstructed) reconstructPointCloud(frameSequences[i]);
148
    }
148
    }
149
}
149
}
150
 
150
 
151
void SMReconstructionWorker::triangulate(const std::vector<cv::Point2f>& q0, const std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
151
void SMReconstructionWorker::triangulate(const std::vector<cv::Point2f>& q0, const std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
152
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
152
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
153
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
153
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
154
 
154
 
155
    cv::Mat temp(3,4,CV_32F);
155
    cv::Mat temp(3,4,CV_32F);
156
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
156
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
157
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
157
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
158
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
158
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
159
 
159
 
160
    cv::Mat QMatHomogenous, QMat;
160
    cv::Mat QMatHomogenous, QMat;
161
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
161
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
162
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
162
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
163
    cvtools::matToPoints3f(QMat, Q);
163
    cvtools::matToPoints3f(QMat, Q);
164
}
164
}
165
 
165