Subversion Repositories seema-scanner

Rev

Rev 42 | Rev 45 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 42 Rev 44
1
#include "SMReconstructionWorker.h"
1
#include "SMReconstructionWorker.h"
2
 
2
 
3
#include "AlgorithmGrayCode.h"
3
#include "AlgorithmGrayCode.h"
4
#include "AlgorithmPhaseShift.h"
4
#include "AlgorithmPhaseShift.h"
5
 
5
 
6
#include <QCoreApplication>
6
#include <QCoreApplication>
7
#include <QSettings>
7
#include <QSettings>
8
 
8
 
9
#include <iostream>
9
#include <iostream>
10
#include <opencv2/opencv.hpp>
10
#include <opencv2/opencv.hpp>
11
 
11
 
12
#include "cvtools.h"
12
#include "cvtools.h"
13
 
13
 
14
#include <pcl/filters/statistical_outlier_removal.h>
14
#include <pcl/filters/statistical_outlier_removal.h>
15
#include <pcl/io/pcd_io.h>
15
#include <pcl/io/pcd_io.h>
-
 
16
#include <pcl/features/normal_3d.h>
16
 
17
 
17
 
18
 
18
void SMReconstructionWorker::setup(){
19
void SMReconstructionWorker::setup(){
19
 
20
 
20
    QSettings settings;
21
    QSettings settings;
21
 
22
 
22
    // Get current calibration
23
    // Get current calibration
23
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
24
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
24
 
25
 
25
    // Create Algorithm
26
    // Create Algorithm
26
    dir = (CodingDir)settings.value("pattern/direction", CodingDirHorizontal).toInt();
27
    dir = (CodingDir)settings.value("pattern/direction", CodingDirHorizontal).toInt();
27
    if(dir == CodingDirNone)
28
    if(dir == CodingDirNone)
28
        std::cerr << "SMCaptureWorker: invalid coding direction " << std::endl;
29
        std::cerr << "SMCaptureWorker: invalid coding direction " << std::endl;
29
 
30
 
30
    int resX = settings.value("projector/resX").toInt();
31
    int resX = settings.value("projector/resX").toInt();
31
    int resY = settings.value("projector/resY").toInt();
32
    int resY = settings.value("projector/resY").toInt();
32
    QString codec = settings.value("codec", "GrayCode").toString();
33
    QString codec = settings.value("codec", "GrayCode").toString();
33
    if(codec == "PhaseShift")
34
    if(codec == "PhaseShift")
34
        algorithm = new AlgorithmPhaseShift(resX, resY, dir);
35
        algorithm = new AlgorithmPhaseShift(resX, resY, dir);
35
    else if(codec == "GrayCode")
36
    else if(codec == "GrayCode")
36
        algorithm = new AlgorithmGrayCode(resX, resY, dir);
37
        algorithm = new AlgorithmGrayCode(resX, resY, dir);
37
    else
38
    else
38
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
39
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
39
 
40
 
40
 
41
 
41
//    // Precompute lens correction maps
42
//    // Precompute lens correction maps
42
//    cv::Mat eye = cv::Mat::eye(3, 3, CV_32F);
43
//    cv::Mat eye = cv::Mat::eye(3, 3, CV_32F);
43
//    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap0Horz, lensMap0Vert);
44
//    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap0Horz, lensMap0Vert);
44
//    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap1Horz, lensMap1Vert);
45
//    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap1Horz, lensMap1Vert);
45
 
46
 
46
    //cv::Mat mapHorz, mapVert;
47
    //cv::Mat mapHorz, mapVert;
47
    //cv::normalize(lensMap0Horz, mapHorz, 0, 255, cv::NORM_MINMAX, CV_8U);
48
    //cv::normalize(lensMap0Horz, mapHorz, 0, 255, cv::NORM_MINMAX, CV_8U);
48
    //cv::normalize(lensMap0Vert, mapVert, 0, 255, cv::NORM_MINMAX, CV_8U);
49
    //cv::normalize(lensMap0Vert, mapVert, 0, 255, cv::NORM_MINMAX, CV_8U);
49
    //cv::imwrite("mapHorz.png", mapHorz);
50
    //cv::imwrite("mapHorz.png", mapHorz);
50
    //cv::imwrite("mapVert.png", mapVert);
51
    //cv::imwrite("mapVert.png", mapVert);
51
}
52
}
52
 
53
 
53
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
54
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
54
 
55
 
55
    time.start();
56
    time.start();
56
 
57
 
57
    // Get 3D Points
58
    // Get 3D Points
58
    std::vector<cv::Point3f> Q;
59
    std::vector<cv::Point3f> Q;
59
    std::vector<cv::Vec3b> color;
60
    std::vector<cv::Vec3b> color;
60
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
61
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
61
 
62
 
62
    // Convert point cloud to PCL format
63
    // Convert point cloud to PCL format
63
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGB>);
64
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
64
 
65
 
65
    // Interpret as unorganized point cloud
-
 
66
    pointCloudPCL->width = Q.size();
66
    pointCloudPCL->width = Q.size();
67
    pointCloudPCL->height = 1;
67
    pointCloudPCL->height = 1;
68
    pointCloudPCL->is_dense = false;
68
    pointCloudPCL->is_dense = false;
69
 
69
 
70
    pointCloudPCL->points.resize(Q.size());
70
    pointCloudPCL->points.resize(Q.size());
71
 
71
 
72
    for(int i=0; i<Q.size(); i++){
72
    for(int i=0; i<Q.size(); i++){
73
        pcl::PointXYZRGB point;
73
        pcl::PointXYZRGBNormal point;
74
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
74
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
75
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
75
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
76
        pointCloudPCL->points[i] = point;
76
        pointCloudPCL->points[i] = point;
77
    }
77
    }
78
 
78
 
-
 
79
    // Estimate surface normals
-
 
80
    pcl::NormalEstimation<pcl::PointXYZRGBNormal, pcl::PointXYZRGBNormal> ne;
-
 
81
    pcl::search::KdTree<pcl::PointXYZRGBNormal>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZRGBNormal>());
-
 
82
    ne.setSearchMethod(tree);
-
 
83
    ne.setRadiusSearch(3);
-
 
84
    ne.setViewPoint(0.0, 0.0, 0.0);
-
 
85
    ne.setInputCloud(pointCloudPCL);
-
 
86
    ne.compute(*pointCloudPCL);
-
 
87
 
-
 
88
    // Assemble SMPointCloud data structure
79
    SMPointCloud smPointCloud;
89
    SMPointCloud smPointCloud;
80
    smPointCloud.pointCloud = pointCloudPCL;
90
    smPointCloud.pointCloud = pointCloudPCL;
81
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
91
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
82
 
92
 
-
 
93
    // Determine transform in world (camera0) coordinate system
-
 
94
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
-
 
95
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
-
 
96
    cv::Mat R;
-
 
97
    cv::Rodrigues(rot_rvec, R);
-
 
98
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
-
 
99
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
-
 
100
 
83
    // Emit result
101
    // Emit result
84
    emit newPointCloud(smPointCloud);
102
    emit newPointCloud(smPointCloud);
85
 
103
 
86
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
104
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
87
 
105
 
88
}
106
}
89
 
107
 
90
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
108
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
91
 
109
 
92
    // Process sequentially
110
    // Process sequentially
93
    for(int i=0; i<frameSequences.size(); i++){
111
    for(int i=0; i<frameSequences.size(); i++){
94
        reconstructPointCloud(frameSequences[i]);
112
        reconstructPointCloud(frameSequences[i]);
95
    }
113
    }
96
 
114
 
97
}
115
}
98
 
116
 
99
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
117
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
100
 
118
 
101
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
119
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
102
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
120
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
103
 
121
 
104
    cv::Mat temp(3,4,CV_32F);
122
    cv::Mat temp(3,4,CV_32F);
105
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
123
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
106
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
124
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
107
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
125
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
108
 
126
 
109
    cv::Mat QMatHomogenous, QMat;
127
    cv::Mat QMatHomogenous, QMat;
110
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
128
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
111
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
129
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
112
    cvtools::matToPoints3f(QMat, Q);
130
    cvtools::matToPoints3f(QMat, Q);
113
 
131
 
114
 
132
 
115
}
133
}
116
 
134
 
117
//void SMReconstructionWorker::triangulateFromUpVp(cv::Mat &up, cv::Mat &vp, cv::Mat &xyz){
135
//void SMReconstructionWorker::triangulateFromUpVp(cv::Mat &up, cv::Mat &vp, cv::Mat &xyz){
118
 
136
 
119
//    std::cerr << "WARNING! NOT FULLY IMPLEMENTED!" << std::endl;
137
//    std::cerr << "WARNING! NOT FULLY IMPLEMENTED!" << std::endl;
120
//    int N = up.rows * up.cols;
138
//    int N = up.rows * up.cols;
121
 
139
 
122
//    cv::Mat projPointsCam(2, N, CV_32F);
140
//    cv::Mat projPointsCam(2, N, CV_32F);
123
//    uc.reshape(0,1).copyTo(projPointsCam.row(0));
141
//    uc.reshape(0,1).copyTo(projPointsCam.row(0));
124
//    vc.reshape(0,1).copyTo(projPointsCam.row(1));
142
//    vc.reshape(0,1).copyTo(projPointsCam.row(1));
125
 
143
 
126
//    cv::Mat projPointsProj(2, N, CV_32F);
144
//    cv::Mat projPointsProj(2, N, CV_32F);
127
//    up.reshape(0,1).copyTo(projPointsProj.row(0));
145
//    up.reshape(0,1).copyTo(projPointsProj.row(0));
128
//    vp.reshape(0,1).copyTo(projPointsProj.row(1));
146
//    vp.reshape(0,1).copyTo(projPointsProj.row(1));
129
 
147
 
130
//    cv::Mat Pc(3,4,CV_32F,cv::Scalar(0.0));
148
//    cv::Mat Pc(3,4,CV_32F,cv::Scalar(0.0));
131
//    cv::Mat(calibration.Kc).copyTo(Pc(cv::Range(0,3), cv::Range(0,3)));
149
//    cv::Mat(calibration.Kc).copyTo(Pc(cv::Range(0,3), cv::Range(0,3)));
132
 
150
 
133
//    cv::Mat Pp(3,4,CV_32F), temp(3,4,CV_32F);
151
//    cv::Mat Pp(3,4,CV_32F), temp(3,4,CV_32F);
134
//    cv::Mat(calibration.Rp).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
152
//    cv::Mat(calibration.Rp).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
135
//    cv::Mat(calibration.Tp).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
153
//    cv::Mat(calibration.Tp).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
136
//    Pp = cv::Mat(calibration.Kp) * temp;
154
//    Pp = cv::Mat(calibration.Kp) * temp;
137
 
155
 
138
//    cv::Mat xyzw;
156
//    cv::Mat xyzw;
139
//    cv::triangulatePoints(Pc, Pp, projPointsCam, projPointsProj, xyzw);
157
//    cv::triangulatePoints(Pc, Pp, projPointsCam, projPointsProj, xyzw);
140
 
158
 
141
//    xyz.create(3, N, CV_32F);
159
//    xyz.create(3, N, CV_32F);
142
//    for(int i=0; i<N; i++){
160
//    for(int i=0; i<N; i++){
143
//        xyz.at<float>(0,i) = xyzw.at<float>(0,i)/xyzw.at<float>(3,i);
161
//        xyz.at<float>(0,i) = xyzw.at<float>(0,i)/xyzw.at<float>(3,i);
144
//        xyz.at<float>(1,i) = xyzw.at<float>(1,i)/xyzw.at<float>(3,i);
162
//        xyz.at<float>(1,i) = xyzw.at<float>(1,i)/xyzw.at<float>(3,i);
145
//        xyz.at<float>(2,i) = xyzw.at<float>(2,i)/xyzw.at<float>(3,i);
163
//        xyz.at<float>(2,i) = xyzw.at<float>(2,i)/xyzw.at<float>(3,i);
146
//    }
164
//    }
147
 
165
 
148
//    xyz = xyz.t();
166
//    xyz = xyz.t();
149
//    xyz = xyz.reshape(3, up.rows);
167
//    xyz = xyz.reshape(3, up.rows);
150
//}
168
//}
151
 
169
 
152
 
170