Subversion Repositories seema-scanner

Rev

Rev 183 | Rev 192 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
27 jakw 1
#include "SMReconstructionWorker.h"
9 jakw 2
 
41 jakw 3
#include "AlgorithmGrayCode.h"
99 jakw 4
#include "AlgorithmGrayCodeHorzVert.h"
128 jakw 5
#include "AlgorithmPhaseShiftTwoFreq.h"
6
#include "AlgorithmPhaseShiftThreeFreq.h"
123 jakw 7
#include "AlgorithmLineShift.h"
27 jakw 8
 
9 jakw 9
#include <QCoreApplication>
10
#include <QSettings>
11
 
12
#include <iostream>
13
#include <opencv2/opencv.hpp>
14
 
42 jakw 15
#include "cvtools.h"
180 jakw 16
#include <opencv2/core/eigen.hpp>
42 jakw 17
 
9 jakw 18
#include <pcl/filters/statistical_outlier_removal.h>
19
#include <pcl/io/pcd_io.h>
44 jakw 20
#include <pcl/features/normal_3d.h>
185 jakw 21
#include <pcl/features/normal_3d_omp.h>
180 jakw 22
#include <pcl/common/transforms.h>
9 jakw 23
 
24
 
27 jakw 25
void SMReconstructionWorker::setup(){
9 jakw 26
 
137 jakw 27
 
28
}
29
 
30
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
31
 
27 jakw 32
    QSettings settings;
33
 
34
    // Get current calibration
33 jakw 35
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
27 jakw 36
 
41 jakw 37
    // Create Algorithm
137 jakw 38
    QString codec = frameSequence.codec;
36 jakw 39
    int resX = settings.value("projector/resX").toInt();
40
    int resY = settings.value("projector/resY").toInt();
137 jakw 41
 
71 jakw 42
    if(codec == "GrayCode")
43
        algorithm = new AlgorithmGrayCode(resX, resY);
107 jakw 44
    else if(codec == "GrayCodeHorzVert")
99 jakw 45
        algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
128 jakw 46
    else if(codec == "PhaseShiftTwoFreq")
47
        algorithm = new AlgorithmPhaseShiftTwoFreq(resX, resY);
48
    else if(codec == "PhaseShiftThreeFreq")
49
        algorithm = new AlgorithmPhaseShiftThreeFreq(resX, resY);
123 jakw 50
    else if(codec == "LineShift")
51
        algorithm = new AlgorithmLineShift(resX, resY);
27 jakw 52
    else
53
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
54
 
9 jakw 55
    time.start();
56
 
42 jakw 57
    // Get 3D Points
36 jakw 58
    std::vector<cv::Point3f> Q;
42 jakw 59
    std::vector<cv::Vec3b> color;
103 jakw 60
    algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
9 jakw 61
 
62
    // Convert point cloud to PCL format
128 jakw 63
    pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGBNormal>);
9 jakw 64
 
36 jakw 65
    pointCloudPCL->width = Q.size();
66
    pointCloudPCL->height = 1;
128 jakw 67
    pointCloudPCL->is_dense = true;
9 jakw 68
 
36 jakw 69
    pointCloudPCL->points.resize(Q.size());
9 jakw 70
 
75 jakw 71
    for(unsigned int i=0; i<Q.size(); i++){
128 jakw 72
        pcl::PointXYZRGBNormal point;
36 jakw 73
        point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
42 jakw 74
        point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
36 jakw 75
        pointCloudPCL->points[i] = point;
27 jakw 76
    }
9 jakw 77
 
180 jakw 78
//    // Transform point cloud to rotation axis coordinate system
79
//    cv::Mat TRCV(3, 4, CV_32F);
80
//    cv::Mat(calibration.Rr).copyTo(TRCV.colRange(0, 3));
81
//    cv::Mat(calibration.Tr).copyTo(TRCV.col(3));
82
//    Eigen::Affine3f TR;
83
//    cv::cv2eigen(TRCV, TR.matrix());
84
//    pcl::transformPointCloud(*pointCloudPCL, *pointCloudPCL, TR);
85
 
185 jakw 86
//    // Estimate surface normals (does not produce proper normals...)
87
//    std::cout << "Estimating normals..." << std::endl;
88
//    pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>);
89
//    pcl::copyPointCloud(*pointCloudPCL, *points);
90
//    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
91
//    pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> ne;
92
//    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
93
//    tree->setInputCloud(points);
94
//    ne.setSearchMethod(tree);
95
//    ne.setRadiusSearch(1.0);
96
//    //ne.setKSearch(50);
97
//    ne.setViewPoint(0.0, 0.0, 0.0);
98
//    ne.setInputCloud(points);
99
//    ne.compute(*normals);
100
//    pcl::copyPointCloud(*normals, *pointCloudPCL);
44 jakw 101
 
102
    // Assemble SMPointCloud data structure
42 jakw 103
    SMPointCloud smPointCloud;
45 jakw 104
    smPointCloud.id = frameSequence.id;
42 jakw 105
    smPointCloud.pointCloud = pointCloudPCL;
106
    smPointCloud.rotationAngle = frameSequence.rotationAngle;
107
 
44 jakw 108
    // Determine transform in world (camera0) coordinate system
109
    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
110
    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
111
    cv::Mat R;
112
    cv::Rodrigues(rot_rvec, R);
113
    smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
114
    smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
115
 
180 jakw 116
 
117
//    // Determine transform in world (camera0) coordinate system
118
//    float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
119
//    cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
120
//    cv::Mat R;
121
//    cv::Rodrigues(rot_rvec, R);
122
//    smPointCloud.R = cv::Matx33f(R);
123
//    smPointCloud.T = cv::Vec3f(0.0,0.0,0.0);
124
 
9 jakw 125
    // Emit result
42 jakw 126
    emit newPointCloud(smPointCloud);
9 jakw 127
 
27 jakw 128
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
9 jakw 129
}
130
 
27 jakw 131
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
24 jakw 132
 
27 jakw 133
    // Process sequentially
167 jakw 134
    for(unsigned int i=0; i<frameSequences.size(); i++){
27 jakw 135
        reconstructPointCloud(frameSequences[i]);
24 jakw 136
    }
137
 
138
}
139
 
41 jakw 140
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
24 jakw 141
 
41 jakw 142
    cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
143
    cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
144
 
145
    cv::Mat temp(3,4,CV_32F);
146
    cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
147
    cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
148
    cv::Mat P1 = cv::Mat(calibration.K1) * temp;
149
 
42 jakw 150
    cv::Mat QMatHomogenous, QMat;
151
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
152
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
153
    cvtools::matToPoints3f(QMat, Q);
41 jakw 154
 
42 jakw 155
 
41 jakw 156
}