27 |
jakw |
1 |
#include "SMReconstructionWorker.h"
|
9 |
jakw |
2 |
|
41 |
jakw |
3 |
#include "AlgorithmGrayCode.h"
|
99 |
jakw |
4 |
#include "AlgorithmGrayCodeHorzVert.h"
|
41 |
jakw |
5 |
#include "AlgorithmPhaseShift.h"
|
123 |
jakw |
6 |
#include "AlgorithmLineShift.h"
|
27 |
jakw |
7 |
|
9 |
jakw |
8 |
#include <QCoreApplication>
|
|
|
9 |
#include <QSettings>
|
|
|
10 |
|
|
|
11 |
#include <iostream>
|
|
|
12 |
#include <opencv2/opencv.hpp>
|
|
|
13 |
|
42 |
jakw |
14 |
#include "cvtools.h"
|
|
|
15 |
|
9 |
jakw |
16 |
#include <pcl/filters/statistical_outlier_removal.h>
|
|
|
17 |
#include <pcl/io/pcd_io.h>
|
44 |
jakw |
18 |
#include <pcl/features/normal_3d.h>
|
9 |
jakw |
19 |
|
|
|
20 |
|
27 |
jakw |
21 |
void SMReconstructionWorker::setup(){
|
9 |
jakw |
22 |
|
27 |
jakw |
23 |
QSettings settings;
|
|
|
24 |
|
|
|
25 |
// Get current calibration
|
33 |
jakw |
26 |
calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
|
27 |
jakw |
27 |
|
41 |
jakw |
28 |
// Create Algorithm
|
36 |
jakw |
29 |
int resX = settings.value("projector/resX").toInt();
|
|
|
30 |
int resY = settings.value("projector/resY").toInt();
|
71 |
jakw |
31 |
QString codec = settings.value("algorithm", "GrayCode").toString();
|
|
|
32 |
if(codec == "GrayCode")
|
|
|
33 |
algorithm = new AlgorithmGrayCode(resX, resY);
|
107 |
jakw |
34 |
else if(codec == "GrayCodeHorzVert")
|
99 |
jakw |
35 |
algorithm = new AlgorithmGrayCodeHorzVert(resX, resY);
|
71 |
jakw |
36 |
else if(codec == "PhaseShift")
|
70 |
jakw |
37 |
algorithm = new AlgorithmPhaseShift(resX, resY);
|
123 |
jakw |
38 |
else if(codec == "LineShift")
|
|
|
39 |
algorithm = new AlgorithmLineShift(resX, resY);
|
27 |
jakw |
40 |
else
|
|
|
41 |
std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
|
|
|
42 |
|
|
|
43 |
|
42 |
jakw |
44 |
// // Precompute lens correction maps
|
|
|
45 |
// cv::Mat eye = cv::Mat::eye(3, 3, CV_32F);
|
|
|
46 |
// cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap0Horz, lensMap0Vert);
|
|
|
47 |
// cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap1Horz, lensMap1Vert);
|
9 |
jakw |
48 |
|
27 |
jakw |
49 |
//cv::Mat mapHorz, mapVert;
|
|
|
50 |
//cv::normalize(lensMap0Horz, mapHorz, 0, 255, cv::NORM_MINMAX, CV_8U);
|
|
|
51 |
//cv::normalize(lensMap0Vert, mapVert, 0, 255, cv::NORM_MINMAX, CV_8U);
|
|
|
52 |
//cv::imwrite("mapHorz.png", mapHorz);
|
|
|
53 |
//cv::imwrite("mapVert.png", mapVert);
|
9 |
jakw |
54 |
}
|
|
|
55 |
|
27 |
jakw |
56 |
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
|
9 |
jakw |
57 |
|
|
|
58 |
time.start();
|
|
|
59 |
|
42 |
jakw |
60 |
// Get 3D Points
|
36 |
jakw |
61 |
std::vector<cv::Point3f> Q;
|
42 |
jakw |
62 |
std::vector<cv::Vec3b> color;
|
103 |
jakw |
63 |
algorithm->get3DPoints(calibration, frameSequence.frames0, frameSequence.frames1, Q, color);
|
9 |
jakw |
64 |
|
|
|
65 |
// Convert point cloud to PCL format
|
45 |
jakw |
66 |
pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGB>);
|
9 |
jakw |
67 |
|
36 |
jakw |
68 |
pointCloudPCL->width = Q.size();
|
|
|
69 |
pointCloudPCL->height = 1;
|
9 |
jakw |
70 |
pointCloudPCL->is_dense = false;
|
|
|
71 |
|
36 |
jakw |
72 |
pointCloudPCL->points.resize(Q.size());
|
9 |
jakw |
73 |
|
75 |
jakw |
74 |
for(unsigned int i=0; i<Q.size(); i++){
|
45 |
jakw |
75 |
pcl::PointXYZRGB point;
|
36 |
jakw |
76 |
point.x = Q[i].x; point.y = Q[i].y; point.z = Q[i].z;
|
42 |
jakw |
77 |
point.r = color[i][0]; point.g = color[i][1]; point.b = color[i][2];
|
36 |
jakw |
78 |
pointCloudPCL->points[i] = point;
|
27 |
jakw |
79 |
}
|
9 |
jakw |
80 |
|
45 |
jakw |
81 |
// // Estimate surface normals
|
|
|
82 |
// pcl::NormalEstimation<pcl::PointXYZRGB, pcl::PointXYZRGBNormal> ne;
|
|
|
83 |
// pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZRGB>());
|
|
|
84 |
// ne.setSearchMethod(tree);
|
|
|
85 |
// ne.setRadiusSearch(3);
|
|
|
86 |
// ne.setViewPoint(0.0, 0.0, 0.0);
|
|
|
87 |
// ne.setInputCloud(pointCloudPCL);
|
|
|
88 |
// ne.compute(*pointCloudPCL);
|
44 |
jakw |
89 |
|
|
|
90 |
// Assemble SMPointCloud data structure
|
42 |
jakw |
91 |
SMPointCloud smPointCloud;
|
45 |
jakw |
92 |
smPointCloud.id = frameSequence.id;
|
42 |
jakw |
93 |
smPointCloud.pointCloud = pointCloudPCL;
|
|
|
94 |
smPointCloud.rotationAngle = frameSequence.rotationAngle;
|
|
|
95 |
|
44 |
jakw |
96 |
// Determine transform in world (camera0) coordinate system
|
|
|
97 |
float angleRadians = frameSequence.rotationAngle/180.0*M_PI;
|
|
|
98 |
cv::Vec3f rot_rvec(0.0, -angleRadians, 0.0);
|
|
|
99 |
cv::Mat R;
|
|
|
100 |
cv::Rodrigues(rot_rvec, R);
|
|
|
101 |
smPointCloud.R = calibration.Rr.t()*cv::Matx33f(R)*calibration.Rr;
|
|
|
102 |
smPointCloud.T = calibration.Rr.t()*cv::Matx33f(R)*calibration.Tr - calibration.Rr.t()*calibration.Tr;
|
|
|
103 |
|
9 |
jakw |
104 |
// Emit result
|
42 |
jakw |
105 |
emit newPointCloud(smPointCloud);
|
9 |
jakw |
106 |
|
27 |
jakw |
107 |
std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
|
9 |
jakw |
108 |
|
|
|
109 |
}
|
|
|
110 |
|
27 |
jakw |
111 |
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
|
24 |
jakw |
112 |
|
27 |
jakw |
113 |
// Process sequentially
|
|
|
114 |
for(int i=0; i<frameSequences.size(); i++){
|
|
|
115 |
reconstructPointCloud(frameSequences[i]);
|
24 |
jakw |
116 |
}
|
|
|
117 |
|
|
|
118 |
}
|
|
|
119 |
|
41 |
jakw |
120 |
void SMReconstructionWorker::triangulate(std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f> &Q){
|
24 |
jakw |
121 |
|
41 |
jakw |
122 |
cv::Mat P0(3,4,CV_32F,cv::Scalar(0.0));
|
|
|
123 |
cv::Mat(calibration.K0).copyTo(P0(cv::Range(0,3), cv::Range(0,3)));
|
|
|
124 |
|
|
|
125 |
cv::Mat temp(3,4,CV_32F);
|
|
|
126 |
cv::Mat(calibration.R1).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
|
|
|
127 |
cv::Mat(calibration.T1).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
|
|
|
128 |
cv::Mat P1 = cv::Mat(calibration.K1) * temp;
|
|
|
129 |
|
42 |
jakw |
130 |
cv::Mat QMatHomogenous, QMat;
|
|
|
131 |
cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
|
|
|
132 |
cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
|
|
133 |
cvtools::matToPoints3f(QMat, Q);
|
41 |
jakw |
134 |
|
42 |
jakw |
135 |
|
41 |
jakw |
136 |
}
|