Subversion Repositories seema-scanner

Rev

Rev 28 | Rev 36 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
27 jakw 1
#include "SMReconstructionWorker.h"
9 jakw 2
 
27 jakw 3
#include "CodecGrayCode.h"
4
#include "CodecPhaseShift.h"
5
 
9 jakw 6
#include <QCoreApplication>
7
#include <QSettings>
8
 
9
#include <iostream>
10
#include <opencv2/opencv.hpp>
11
 
12
#include <pcl/filters/statistical_outlier_removal.h>
13
#include <pcl/io/pcd_io.h>
14
 
15
 
27 jakw 16
void SMReconstructionWorker::setup(){
9 jakw 17
 
27 jakw 18
    QSettings settings;
19
 
20
    // Get current calibration
33 jakw 21
    calibration = settings.value("calibration/parameters").value<SMCalibrationParameters>();
27 jakw 22
 
23
    // Create decoder
24
    dir = (CodecDir)settings.value("pattern/direction", CodecDirHorizontal).toInt();
25
    if(dir == CodecDirNone)
26
        std::cerr << "SMCaptureWorker: invalid coding direction " << std::endl;
27
 
28
    QString codec = settings.value("codec", "GrayCode").toString();
29
    if(codec == "PhaseShift")
30
        decoder = new DecoderPhaseShift(dir);
31
    else if(codec == "GrayCode")
32
        decoder = new DecoderGrayCode(dir);
33
    else
34
        std::cerr << "SLScanWorker: invalid codec " << codec.toStdString() << std::endl;
35
 
36
 
25 jakw 37
    // Precompute lens correction maps
38
    cv::Mat eye = cv::Mat::eye(3, 3, CV_32F);
27 jakw 39
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap0Horz, lensMap0Vert);
40
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap1Horz, lensMap1Vert);
9 jakw 41
 
27 jakw 42
    //cv::Mat mapHorz, mapVert;
43
    //cv::normalize(lensMap0Horz, mapHorz, 0, 255, cv::NORM_MINMAX, CV_8U);
44
    //cv::normalize(lensMap0Vert, mapVert, 0, 255, cv::NORM_MINMAX, CV_8U);
45
    //cv::imwrite("mapHorz.png", mapHorz);
46
    //cv::imwrite("mapVert.png", mapVert);
9 jakw 47
}
48
 
27 jakw 49
void SMReconstructionWorker::reconstructPointCloud(SMFrameSequence frameSequence){
9 jakw 50
 
51
    time.start();
52
 
27 jakw 53
    // Decode frames
54
    cv::Mat up0, vp0, up1, vp1, shading0, mask0, shading1, mask1;
55
    decoder->decodeFrames(frameSequence.frames0, up0, vp0, mask0, shading0);
56
    decoder->decodeFrames(frameSequence.frames1, up1, vp1, mask1, shading1);
57
 
58
    // Triangulate
9 jakw 59
    cv::Mat pointCloud;
27 jakw 60
    if(dir == CodecDirBoth)
61
        triangulateFromUpVp(up0, vp0, mask0, up1, vp1, mask1, pointCloud);
62
    else if(dir == CodecDirHorizontal)
63
        triangulateFromUp(up0, mask0, up1, mask1, pointCloud);
64
    else if(dir == CodecDirVertical)
65
        triangulateFromVp(vp0, mask0, vp1, mask1, pointCloud);
9 jakw 66
 
27 jakw 67
    // Simply use shading information from camera 0 (for now)
68
    cv::Mat shading = shading0;
9 jakw 69
 
70
    // Convert point cloud to PCL format
71
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGB>);
72
 
73
    // Interprete as organized point cloud
74
    pointCloudPCL->width = pointCloud.cols;
75
    pointCloudPCL->height = pointCloud.rows;
76
    pointCloudPCL->is_dense = false;
77
 
78
    pointCloudPCL->points.resize(pointCloud.rows*pointCloud.cols);
79
 
27 jakw 80
    for(int row=0; row<pointCloud.rows; row++){
81
        int offset = row * pointCloudPCL->width;
82
        for(int col=0; col<pointCloud.cols; col++){
83
            const cv::Vec3f pnt = pointCloud.at<cv::Vec3f>(row,col);
84
            unsigned char shade = shading.at<unsigned short>(row,col) >> 8;
85
            pcl::PointXYZRGB point;
86
            point.x = pnt[0]; point.y = pnt[1]; point.z = pnt[2];
87
            point.r = shade; point.g = shade; point.b = shade;
88
            pointCloudPCL->points[offset + col] = point;
89
        }
90
    }
9 jakw 91
 
27 jakw 92
/*    // stack xyz data
93
    std::vector<cv::Mat> xyz;
94
    cv::split(pointCloud, xyz);
9 jakw 95
    std::vector<cv::Mat> pointCloudChannels;
96
    pointCloudChannels.push_back(xyz[0]);
97
    pointCloudChannels.push_back(xyz[1]);
98
    pointCloudChannels.push_back(xyz[2]);
99
 
100
    // 4 byte padding
101
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
102
 
103
    // triple uchar color information
104
    std::vector<cv::Mat> rgb;
105
    rgb.push_back(shading);
106
    rgb.push_back(shading);
107
    rgb.push_back(shading);
108
    rgb.push_back(cv::Mat::zeros(shading.size(), CV_8U));
109
 
110
    cv::Mat rgb8UC4;
111
    cv::merge(rgb, rgb8UC4);
112
 
113
    cv::Mat rgb32F(rgb8UC4.size(), CV_32F, rgb8UC4.data);
114
 
115
    pointCloudChannels.push_back(rgb32F);
116
 
117
    // 12 bytes padding
118
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
119
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
120
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
121
 
122
    // merge channels
123
    cv::Mat pointCloudPadded;
124
    cv::merge(pointCloudChannels, pointCloudPadded);
125
 
126
    // memcpy everything
27 jakw 127
    memcpy(&pointCloudPCL->points[0], pointCloudPadded.data, pointCloudPadded.rows*pointCloudPadded.cols*sizeof(pcl::PointXYZRGB));*/
9 jakw 128
 
129
 
130
    // Emit result
131
    emit newPointCloud(pointCloudPCL);
132
 
27 jakw 133
    std::cout << "SMReconstructionWorker: " << time.elapsed() << "ms" << std::endl;
9 jakw 134
 
135
}
136
 
27 jakw 137
void SMReconstructionWorker::reconstructPointClouds(std::vector<SMFrameSequence> frameSequences){
24 jakw 138
 
27 jakw 139
    // Process sequentially
140
    for(int i=0; i<frameSequences.size(); i++){
141
        reconstructPointCloud(frameSequences[i]);
24 jakw 142
    }
143
 
144
}
145
 
28 jakw 146
void SMReconstructionWorker::triangulateFromUp(cv::Mat up0, cv::Mat mask0,cv::Mat up1, cv::Mat mask1,cv::Mat &xyz){}
147
void SMReconstructionWorker::triangulateFromVp(cv::Mat vp0, cv::Mat mask0, cv::Mat vp1, cv::Mat mask1, cv::Mat &xyz){}
148
void SMReconstructionWorker::triangulateFromUpVp(cv::Mat up0, cv::Mat vp0, cv::Mat mask0, cv::Mat up1, cv::Mat vp1, cv::Mat mask1, cv::Mat &xyz){}
24 jakw 149
 
27 jakw 150
//void SMReconstructionWorker::triangulateFromUpVp(cv::Mat &up, cv::Mat &vp, cv::Mat &xyz){
24 jakw 151
 
25 jakw 152
//    std::cerr << "WARNING! NOT FULLY IMPLEMENTED!" << std::endl;
153
//    int N = up.rows * up.cols;
24 jakw 154
 
25 jakw 155
//    cv::Mat projPointsCam(2, N, CV_32F);
156
//    uc.reshape(0,1).copyTo(projPointsCam.row(0));
157
//    vc.reshape(0,1).copyTo(projPointsCam.row(1));
24 jakw 158
 
25 jakw 159
//    cv::Mat projPointsProj(2, N, CV_32F);
160
//    up.reshape(0,1).copyTo(projPointsProj.row(0));
161
//    vp.reshape(0,1).copyTo(projPointsProj.row(1));
24 jakw 162
 
25 jakw 163
//    cv::Mat Pc(3,4,CV_32F,cv::Scalar(0.0));
164
//    cv::Mat(calibration.Kc).copyTo(Pc(cv::Range(0,3), cv::Range(0,3)));
24 jakw 165
 
25 jakw 166
//    cv::Mat Pp(3,4,CV_32F), temp(3,4,CV_32F);
167
//    cv::Mat(calibration.Rp).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
168
//    cv::Mat(calibration.Tp).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
169
//    Pp = cv::Mat(calibration.Kp) * temp;
24 jakw 170
 
25 jakw 171
//    cv::Mat xyzw;
172
//    cv::triangulatePoints(Pc, Pp, projPointsCam, projPointsProj, xyzw);
24 jakw 173
 
25 jakw 174
//    xyz.create(3, N, CV_32F);
175
//    for(int i=0; i<N; i++){
176
//        xyz.at<float>(0,i) = xyzw.at<float>(0,i)/xyzw.at<float>(3,i);
177
//        xyz.at<float>(1,i) = xyzw.at<float>(1,i)/xyzw.at<float>(3,i);
178
//        xyz.at<float>(2,i) = xyzw.at<float>(2,i)/xyzw.at<float>(3,i);
179
//    }
24 jakw 180
 
25 jakw 181
//    xyz = xyz.t();
182
//    xyz = xyz.reshape(3, up.rows);
27 jakw 183
//}
24 jakw 184